

TEST REPORT			
C10/11: ed.2.1 SPECIFIC TECHNICAL PRESCRIPTIONS REGARDING POWER-GENERATING			
	IG IN PARALLEL TO THE DISTRIBUTION NETWORK		
Depart Deference No	2008220260211.004		
Report Reference No			
Date of issue	-		
Total number of pages:	79 pages		
	. Intertek Testing Services Shenzhen Ltd. Guangzhou Branch		
Address	Room 02, & 101/E201/E301/E401/E501/E601/E701/E801 of Room 01 1- 8/F., No. 7-2. Caipin Road, Science City, GETDD, Guangzhou, Guangdong, China		
Testing location/ address	Same as above		
Tested by (name +	Max Gao Max		
signature):	Engineer		
Approved by (name + signature).	Max Gao Max Engineer Jason Fu Technical Team Leader T_{con}		
	Technical Team Leader		
Applicant's name	Shenzhen SOFAR SOLAR Co., Ltd.		
Address	· 401, Building 4, AnTongDa Industrial Park, District 68, XingDong Community, XinAn Street, BaoAn District, Shenzhen, China		
Test specification:			
Standard	C10/11: ed.2.1, 01 Sep 2019		
Test procedure	Type approval for type A		
Non-standard test	N/A		
method			
Test Report Form No.	—		
Test Report Form(s) Originator	-		
Master TRF			
	ble or in part for non-commercial purposes as long as Intertek is acknowledged as copyright takes no responsibility for and will not assume liability for damages resulting from the reader's ue to its placement and context.		
Test item description	Solar Grid-tied Inverter		
Trade Mark	SSEAR		
Manufacturer	Same as Applicant		
Model/Type reference	SOFAR 10000TL-G2, SOFAR 12000TL-G2, SOFAR 15000TL-G2		

Page 2 of 79

Ratings	Model	SOFAR 10000TL-G2	SOFAR 12000TL-G2	SOFAR 15000TL-G2	
	Max.PV voltage	1000 d.c.V			
	PV MPPT voltage range	160-960 d.c.V			
	Max.input current	21 /11 d.c.A			
	PV lsc		30/15 d.c.A		
	Max.output power	10000W	12000W	15000W	
	Max.apparent power	11000VA	13200VA	16500VA	
	Nominal output voltage	3/N/PE, 230 /400 a.cV			
	Max.output current	3×16.5 a.c.A	3×20.0 a.c.A	3×24.0 a.c.A	
	Nominal output Frequency	50 Hz			
	Power factor range	0.8	Leading – 0.8 lagg	ing	
	Inverter technology	Non-isolated			
	Safety level		Class I		
	Ingress Protection	IP 65			
	Operation Ambient Temperature		-25°C - +60°C		
	Software Version		V1.20		

Page 3 of 79

Report no. 200827076GZU-001

Tests performed (nan	ne of test and test clause):	Testing location:	
All applicable tests		Intertek Testing Services Shenzhen Ltd. Guangzh Branch	
Remark: For all clauses, the model SOFAR 15000TL-G2 is type tested.		Room 02, & 101/E201/E301/E401/E501/E601/E701/E801 of Room 01 1-8/F., No. 7-2. Caipin Road, Science GETDD, Guangzhou, Guangdong, China	
Copy of marking plate	9		
	SØFAR S	Solar Grid-tied Inverter	
	Model No:	SOFAR 15000TL-G2	
	Max.DC Input Voltage	1000V	
	Operating MPPT Voltage	Range160~960V	
	Max. Input Current	21A/11A	
	Max. PV lsc	30A/15A	
	Nominal Grid Voltage	3/N/PE,230/400Vac	
	Max.Output Current	3x24A	
		50/60Hz	
	Nominal Output Power	<u>15000W</u>	
	Max.Output Power		
		>0.99(adjustable+/-0.8)	
	Ingress Protection		
		ange25°C~+60°C	
	Protective Class	Class I	
	Topology	Non-isolated	
	Made In China Manufacturer : Shenzhen S Address : 401, Building 4, AnTo District 68, XingDong Communi	ngDa Industrial Park, ty,XinAn Street,	
	BaoAn District, Shenzhen, Chin IEC62109-1,IEC62109-2,NB-T		
		<u>o</u> a <u>a</u>	
Nata			
Note:			
1. The above marking		nts required by the safety standard. For the final h do not give rise to misunderstanding may be ado	

3. The other model labels are identical with label above, except the model name and rating.

Page 4 of 79

Report no. 200827076GZU-001

Test item particulars				
Temperature range:	-25°C ~ 60°	°C		
AC Overvoltage category			🖾 OVC III	
DC Overvoltage category		🛛 OVC II		
IP protection class	IP65			
Possible test case verdicts:				
- test case does not apply to the test object::	N/A (Not ap	plicable)		
- test object does meet the requirement:	P (Pass)			
- test object does not meet the requirement:	F (Fail)			
Testing				
Date of receipt of test item:	27 Aug 202	0		
Date (s) of performance of tests:	27 Aug 202	0 – 01 Sep 2	020	

General remarks:

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

"(see Enclosure #)" refers to additional information appended to the report.

"(see appended table)" refers to a table appended to the report.

When determining for test conclusion, measurement uncertainty of tests has been considered. This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. The test report only allows to be revised only within the report defined retention period unless standard or regulation was withdrawn or invalid.

Throughout this report a point is used as the decimal separator.

This report is based on report No. 190411094GZU-001, dated 03 Jan 2020 and perform additional tests as required by C10/11: ed.2.1, 01 Sep 2019.

Page 5 of 79

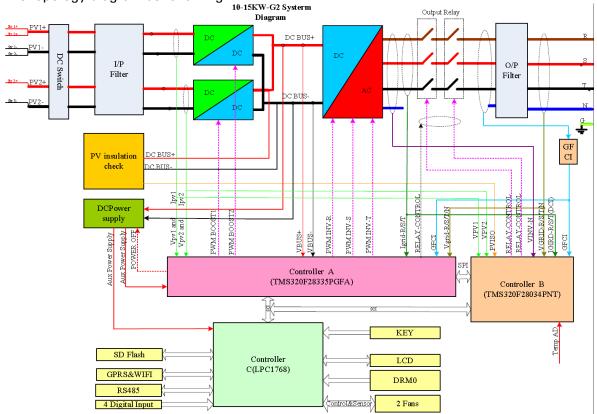
General product information:

ntertek

Total Quality, Assured

The unit is a three-phases non-isolated PV Grid-tied inverter, it can convert the high PV voltage to Grid voltage and feed into Grid network.

The unit is providing EMI filtering at the PV side and AC side. It does provide basic insulation from PV side to Grid.


The unit has two controllers. The master controller A monitor the invert statue; measure the PV voltage and current, bus voltage, AC voltage, current, GFCI and frequency, also communicate with the slave controller B

The slave controller B monitor AC voltage, current, frequency, GFCI and communicate with the master controller A

The relays are designed to redundant structure that controlled by separately.

The master controller and slave controller are used together to control relay open or close, if the single fault on one controller, the other controller can be capable to open the relay, so that still providing safety means.

The topology diagram as following:

Model differences:

The model SOFAR 10000TL-G2, SOFAR 12000TL-G2 and SOFAR 15000TL-G2 are completely identical, except output power derating in software.

The only differences on hardware between the models SOFAR 10000TL-G2, SOFAR 12000TL-G2 and SOFAR 15000TL-G2 are below:

1.The main output inductor is NPS226060*2+NPF226060*2, 2.0Φ*2P /37Ts L=756ųH for model SOFAR 15000TL-G2 while it's NPS226060*2+NPF226060*1, 2.0Φ*2P*42Ts L=0.73mH for model SOFAR 10000TL-G2, SOFAR 12000TL-G2

Page 6 of 79

Factory information:

Dongguan SOFAR SOLAR Co., Ltd.

1F-6F, Building E, No.1 JinQi Road, Bihu Industrial Park, Wulian Village, Fenggang Town, Dongguan City, China

Total Quality. Assured.

Page 7 of 79

Report no. 200827076GZU-001

C10/11: ed.2.1, 01 Sep 2019

Clause Requirement - Test

Result - Remark

Verdict

ANNEX D	Technical basic requirements regarding the power-g	enerating units	Р
D.1	General	This report is only evaluated and tested for generating unit; The generating plant incorporated with the generating unit shall further consider this clause and sub- clause.	Ρ
	In line with the scope of these technical specifications as well as the CENELEC standards EN 50549-1 and EN 50549-2, these requirements are applicable to all kinds of generation of electrical energy, including energy storage systems.	In line with the scope of EN 50549-1	Ρ
D.2	Order of priorities		Р
	If different requirements on the power-generating unit interfere with each other, the hierarchy listed in EN 50549-1 or EN 50549-2 shall be respected		Р
	 In brief, the standard specifies following hierarchy: 1. Generating unit protection, including regarding the prime mover. 2. Interface protection and protection against fault within the power-generating plant; 3. Voltage support during faults and voltage steps; 4. The lower value of: remote control command on active power limitation setpoint from the DSO and local response to overfrequency; 5. Local response to underfrequency if applicable; 6. Reactive power and active power (P(U)) controls; 7. Other control commands on active power set point for e.g. market, economic reasons, self-consumption optimization. 		Ρ
D.3	Integrated automatic separation system		Р
	This clause is applicable to power-generating units with a maximum power \leq 30 kVA.		Р
	An integrated automatic separation system is strongly recommended in order to facilitate the installation procedure. Indeed, if the power-generating unit is not equipped with such an integrated system, an external device must be used	Incorporating integrated automatic separation system	Ρ
	For the integrated automatic separation system, the requirements of this clause apply.		Р
	Following protection functions are required: • Overvoltage 10 min mean • Overvoltage • Undervoltage • Overfrequency • Underfrequency • A means to detect island situation (LoM) according to EN 62116.	(See appended table D.3)	Ρ

Page 8 of 79

Report no. 200827076GZU-001

C10/11: ed.2.1, 01 Sep 2019 Clause Requirement - Test Result - Remark Verdict Ρ All of these protection functions must comply with the relevant requirements in EN 50549-1 (in edition 2019, section 4.9.3 Two series relays in each line Ρ The integrated automatic separation system must and may independent have single fault tolerance according to EN 50549-1. operation for each relay. The integrated automatic separation system must be Ρ set in accordance with the settings as specified in ANNEXE C D.4 **Operating ranges** Ρ Generating plants shall have the capability to operate Ρ in the operating ranges specified below regard-less of the topology and the settings of the interface protection. D.4.1 **Operating frequency range** Ρ This clause is not applicable to backup power systems Not backup power system N/A as specified in § 2.2.1. The power-generating unit must comply with the Ρ Comply with EN 50549-1 minimum requirements of the applicable standard EN 50549 or EN 5055-2 on the operating frequency range (edition 2019, see clause 4.4.2 « Operating frequency range ») In brief, the requirements in the standard are as (See appended table D.4.1) Ρ follows: Frequency domain Duration 47.5 Hz - 49.0 Hz 30 minutes 49,0 Hz - 51,0 Hz Permanent 51,0 Hz - 51,5 Hz 30 minutes Additionally, the DSO shall be informed about the Ρ capability of the power-generating unit to operate in the frequency range from 51,5 Hz and 52,5 Hz and, where appropriate, the maximum duration of operation in this frequency range. The URD cannot without good reason refuse to apply Comply with above Ρ wider frequency ranges or longer minimum operating requirements periods than those specified above, provided that the technical and economic impact is limited. Maximum admissible power reduction in case of D.4.2 Ρ underfrequency This clause is not applicable to backup power systems Not backup power system N/A as specified in § 2.2.1. In general, a power-generating unit must continue to Ρ operate in case of a reduction of the frequency at the point of connection. This means that, in underfrequency, the power-generating unit should reduce the output power as little as possible and at least being capable of staying above the limit specified

hereafter.

Page 9 of 79

C10/11: ed.2.1, 01 Sep 2019			
Clause	Requirement - Test	Result - Remark	Verdic
	Where the technical capabilities of the power- generating unit are influenced by ambient conditions, these technical capabilities may be demonstrated using the following reference conditions: • Temperature: 0 °C • Altitude: between 400 and 500 m • Humidity: between 15 and 20 g H2O/kg air		Р
D.4.2.1	Limit for non-synchronous power-generating technology (Power Park Modules)	(See appended table D.4.2.1)	Р
	The power-generating unit must comply with the most stringent requirement of EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.4.3 « Minimal requirement for active power delivery at underfrequency »).	Comply with EN 50549-1	P
D.4.2.2	Limits for synchronous power-generating technology	Not synchronous power- generating	N/A
	In steady state (from t2 onwards), the power- generating unit must comply with the relevant default requirement of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see section 4.4.3 « Minimal requirement for active power delivery at underfrequency »).		N/A
	Additionally, in the transient time (between t1 and t2), the power-generating unit must comply with the relevant most stringent requirement of EN 50549-1 or EN 50549-2. (In edition 2019 of the standard, the relevant requirements can be found in clause 4.4.3 « Minimal requirement for active power delivery at underfrequency »).		N/A
D.4.3	Continuous operating voltage range		Р
	The power-generating unit must comply with the relevant requirement of EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.4.4 « Continuous operating voltage range »).	Comply with EN 50549-1	Р
	In brief, the requirement in the standard specifies the power-generating plant should be capable to operate continuously when he voltage at the point of connection is within the following range:	(See appended table D.4.3)	Р
	 For a connection to the low voltage network: 85 % Un < U < 110 % Un where Un = 230 V For a connection to the high voltage network: 90 % 		P
	Uc < U < 110 % Uc where Uc is the declared voltage. It is also allowed to reduce apparent power in case of		N/A P
	voltage is below respectively 95 % Un or 95 % Uc.		-
D.5	Immunity to disturbances		Р
	Independent of the topology and the settings of the interface protection, a power-generating unit must have the following withstand capabilities.		Р
D.5.1	Rate of change of frequency (RoCoF) immunity		Р
	This clause does not apply to backup power systems	1	1

Page 10 of 79

C10/11: ed.2.1, 01 Sep 2019				
Clause	Requirement - Test	Result - Remark	Verdict	
	The power-generating unit must comply with the relevant requirements of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see section 4.5.2 « Rate of change of frequency (RoCoF) immunity ») taking the additional modifications and information specified hereunder into account.	(See appended table D.5.1)	P	
	The power-generating unit shall have the capability to stay connected and operate when the frequen-cy at the point of connection changes with the frequency against time profiles as depicted in the fig-ures hereunder. When considering a sliding measurement window of 500ms, these profiles have a maximum RoCoF of 2 Hz/s.		P	
	For synchronous generating technology, this requirement is more stringent than the default value in the applicable standard EN 50549-1 or EN 50549-2 (2 Hz/s instead of 1 Hz/s) as, in contrast with the standard, no distinction is made between power- generating technologies.	Not synchronous power- generating	N/A	
D.5.2	Under-voltage ride through UVRT		Р	
	This section is not applicable to backup power systems as specified in § 2.2.1.	Not backup power system	N/A	
	For a power-generating unit that is part of a power- generating module with a power ≥ 1 MW (type B in accordance with NC RfG) this paragraph is mandatory.		N/A	
	For a power-generating unit that is part of a power- generating module with a power < 1 MW, this par- agraph is non-mandatory and to be considered as a orienting capability, not as a hard requirement. However, the real withstand capability to voltage dips shall be provided during the homologation process.	Considered as an orienting capability	P	
	The power-generating unit must comply with the relevant requirements of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.5.3 « Under-voltage ride through (UVRT) »), with the following change: • The voltage-time profiles are to be replaced by the profiles hereunder.	(See appended table D.5.2)	P	
	As a consequence, for synchronous generating technology this profile is more stringent than the default requirement in EN 50549-1 or EN 50549-2.	Not synchronous power- generating	N/A	
	For some power-generating technologies, the behaviour of the power-generating unit during and after voltage dips may be impacted by the short circuit power available at the point of connection.		N/A	
	For such technologies different cases can be considered:		N/A	

Page 11 of 79

	C10/11: ed.2.1, 01 Sep 20)19	
Clause	Requirement - Test	Result - Remark	Verdict
	• Compliance with this UVRT requirement can be demonstrated considering a ratio of 10 be-tween the available short circuit power at the connection point and the maximum power of the considered power- generating module. In this case, no further checks are needed.		N/A
	 If not, the manufacturer must declare the minimum short-circuit power conditions for which the UVRT- requirement can be complied with. This value shall be considered during the installation process. 		N/A
	In line with EN 50549-1 or EN 50549-2 at least 90% of the pre-fault power or 90% of the available power whichever is the smallest, shall be resumed as fast as possible, but at the latest within the following default time after the voltage returned to the continuous operating voltage range (85% Un < U < 110% Un for a connection to a low-voltage distribution network; 90% Uc < U < 110% Uc for a connection to a high-voltage distribution network):		Ρ
	 3 seconds for a power-generating unit with synchronous generating technology 		N/A
	 1 second for a power-generating unit with non- synchronous generating technology 		Р
	Another site specific maximum allowed time is to be agreed during the commissioning process. This decision must be taken with the DSO in coordination with the TSO.		N/A
	For a backup power system connected to the high voltage distribution network as specified in §2.2.1, the general requirement is this clause may be relaxed, replacing the voltage-time profile by the figure underneath.	Not backup power system	N/A
D.5.3	Over-voltage ride through (OVRT)		N/A
	Requirement under consideration for a future edition. No requirement in this edition.		N/A
D.6	Active response to frequency deviations		Р
D.6.1	Power response to overfrequency		Р
	This clause is not applicable to backup power system as specified in section §2.2.1	Not backup power system	N/A
	The power-generating unit must comply with the relevant requirements of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see 4.6.1 « Power response to overfrequency ») taking into account the additional modifications and information specified hereunder.	Comply with EN 50549-1	P
	Instead of the default maximum step response time of 30s specified in the standards EN 50549-1 and EN 50549-2, the following dynamic step response characteristics are required:		Р

Page 12 of 79

	C10/11: ed.2.1, 01 Sep 2019			
Clause	Requirement - Test	Result - Remark	Verdict	
	• For synchronous power-generating technologies For power-generating units base on a gas turbine or an internal combustion engine with tech-nical specificities not allowing compliance with the prescriptions applied by default as de-scribed above, the following alternative prescription, relating to a minimum power gradient in increasing or decreasing frequency, is applicable:		N/A	

Γ

Page 13 of 79

Report no. 200827076GZU-001

C10/11: ed.2.1, 01 Sep 2019

C10/11. ed.2.1, 01 Sep 2019			
Clause	Requirement - Test	Result - Remark	Verdict

	- If Pmax >2 MW at minimum 0,33 % Pmax per second		N/A
	For non-synchronous power-generating technology	(See appended table D.6.1)	Р
	The figure hereunder clarifies the terms « Step response time» and « Settling time». In this clause, the 'Value' is the active power and the tolerance is 10%.		Р
	In line with the default requirement of the applicable standard EN 50549-1 :2019 or EN 50549-2: 2019, power-generating units reaching their minimum regulating level shall, in the event of further frequency increase, maintain this power level until a frequency decrease results in a power setpoint which is again above this level.	Comply with EN 50549-1	Р
	The optional deactivation threshold fstop is not required. In case fstop is implemented, it shall be deactivated.		Р
	At the time of deactivation of the active power frequency response (= frequency goes down below the threshold frequency f1), the active power can be increased to up to the level of the available power. Nevertheless this shall be done respecting a power limit with a gradient of 10% Pmax/min.		P
	For energy storage systems with a connection to the high-voltage distribution network, the DSU might, for justified technical or security reasons, agree with the DSO on applicable minimum state of charge limits in his connection agreement.		N/A
	The settings must be protected from unpermitted interference (e.g. by a password or seal).		Р
	Automatic disconnection and reconnection as alternative for the droop function are not permitted by default as per the TSO provisions.		Р
D.6.2	Power response to underfrequency		Р
	The power-generating unit must comply with the relevant requirements of the applicable EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.6.2 « Power response to underfrequency ») taking additional modifications and information as specified hereunder into account.		P
	This clause is applicable to energy storage systems. For justified technical or security reasons, the DSU might agree with the DSO (in his connection agreement is the power-generating plant is connected to the high-voltage distribution network) on applicable maximum state of charge limits in his connection agreement.		P

Page 14 of 79

	C10/11: ed.2.1, 01 Sep 20)19	
Clause	Requirement - Test	Result - Remark	Verdict
	This clause is optional for all other power-generating units. When, in such units, the capability of activating active power response to underfrequency is activated, the power-generating units must comply with the requirements of this clause.		N/A
	Instead of the default maximum step response time of 30s in EN 50549-1 and EN 50549-2, the re-quired dynamic step response characteristics (step response time and settling time) are identical to those stipulated above regarding the power response to overfrequency, including the alternative approach for power-generating units based on a gas turbine or an internal combustion engine (see D.6.1).		P
	The settings must be protected from unpermitted interference (e.g. by a password or seal).		Р
D.7	Power response to voltage changes		Р
D.7.1	Voltage support by reactive power		Р
	A backup power system as referred to in section §2.2.1, must not comply with the requirements of this clause. Instead, for such a system, the power factor must be as close to 1 as possible and may definitely not fall below the limit of 0.85 during in-parallel operation. No control mode at all for the reactive power is imposed by the DSO.	Not backup power system	N/A
	The power-generating plant must at least comply with the corresponding requirements of the applicable standard EN 50549-1 or EN 50549-233 (edition 2019, see clause 4.7.2 « Voltage support by reactive power ») taking the modifications and additional information specified hereunder into account. It is usually the power-generating unit itself that meets this requirement, which is assessed at the time of the homologation. In the other cases, if for example additional equipment such as a capacitor bank is necessary in combination with the power-generating unit, this will be evaluated by the DSO during the procedure for commissioning.	Comply with EN 50549-1	P
	For a power-generating plant with a maximum power ≤ 250 kVA connected to the high-voltage distribution network, the DSU may decide to comply to the equivalent requirements of EN 50549-1 rather than those of EN 50549-2.		N/A
	The reactive power capability shall be evaluated at the terminals of the power-generating unit (including, when applicable, the step-up transformer specific to the power-generating unit).	(See appended table D.7.1)	Р
	The real reactive power capabilities of the power- generating unit at the terminals should be communicated to the DSO. This can be done during the process of homologation.		Р

Page 15 of 79

	C10/11: ed.2.1, 01 Sep 20)19	
Clause	Requirement - Test	Result - Remark	Verdict
	If the capabilities exceed the minimum requirement, and as far as this has only limited technical and economic impact, the DSU is not allowed to refuse without justification the DSO to make use of the reactive power capability (this is not applicable to a small power-generating plant (as defined in chapter 4)).		P
	The settings of the control mode must be protected from unpermitted interference (e.g. by a password or seal).		Р
D.7.1.1	Specific for a small power-generating plant		Р
	By default, the power generation unit must operate according to the following rules:		Р
	• When the voltage \leq 105 % Un: cos phi = 1 (Q=0)		Р
	• When the voltage > 105 % Un: free operation with 1 ≥ cos phi > 0,9under-excited. (no over-excited operation allowed)		Р
D.7.1.2	Specific for another (not small) power-generating plant		Р
	If applicable, the details of the reactive power control mode to be activated in the power-generating unit shall be provided by the DSO during the installation procedure. This setting might be reviewed by the DSO during the lifetime of the power-generating module.		Р
	If the power-generating plant is connected to the high voltage distribution network, it may be necessary to use additional resources such as, for example, a capacitor bank to meet the previous requirements related to the supply of reactive power. If the power- generating unit is disconnected, they must be disconnected as well.	Not connected to the high voltage distribution network	N/A
	For a synchronous power-generating unit that is part of a power-generating module with a maximum power of \ge 1 MW (type B according to NC RfG), the following specific requirement is also applicable:	Not synchronous power- generating unit	N/A
	Alternatively to the Q(U) control mode specified above, a synchronous power-generating unit of type B (power ≥ 1 MW) shall be equipped with a permanent automatic excitation control system that can provide constant alternator terminal voltage at a selectable setpoint without instability over the entire operating range of the synchronous power- generating module. When the setpoint gives rise to a re-active power exchange beyond the capability requirements above, the reactive power exchange may be kept at the limits of the required capability.		N/A

Page 16 of 79

Report no. 200827076GZU-001

C10/11: ed.2.1, 01 Sep 2019 Clause Requirement - Test Result - Remark Verdict Ρ The setpoint must be selectable in the continuous operating voltage range (see section D.4.3) and is given by the DSO. The DSO can give the required instructions to make Ρ the selection of the setpoint possible remotely by the DSO's control center (see § 7.13), respecting the applicable regional legal framework. D.7.2 Ρ Voltage related active power reduction P(U) (See appended table D.7.2) Voltage relating active power reduction is allowed Ρ Comply with EN 50549-1 and even recommended in order to avoid disconnection due to the operation of the overvoltage protection. When implemented, the power-generating unit must comply with the relevant requirements of the applicable standard EN 50549-1 or EN50549-2 (edition 2019, see clause 4.7.3 « Voltage related active power reduction »). D.7.3 Provision of additional fast reactive current during Ρ faults and voltage steps This Section is only applicable to non-synchronous Ρ power-generating units connected to a high volt-age distribution network and are not part of a small power-generating plant. For power-generating units that are part of a power-Ρ generating module with a maximum power <1 MW, there is no capability requirement. However, if such a generating module has the capability to provide additional fast reactive current during faults and voltage steps, this function must be deactivated by

D.8	Connection and reconnection	Р
	A directly connected asynchronous machine cannot provide voltage support in a controlled manner with regard to short circuit currents as a consequence of faults or when there are sudden voltage variations. The DSO will include these elements in its assessment of the demand for connection.	N/A
	Power-generating units that are part of a power- generating module with a maximum power ≥ 1 MW must comply with the relevant requirements of the standard EN 50549-2 (edition 2019, see clause 4.7.4.2.1 « Voltage support during faults and voltage steps »), taking the additional information specified in this Section into account. By default, this function must be deactivated.	Ρ
	default.	

Page 17 of 79

C10/11: ed.2.1, 01 Sep 2019						
Clause	Requirement - Test	Result - Remark	Verdict			
	The power-generating unit must comply with the relevant requirements of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.10 « Connection and starting to generate electrical power ») taking the additional information specified hereunder into account.	Comply with EN 50549-1	P			
	Connection and reconnection after tripping of the interface protection relay is subject to the conditions listed in the table hereunder. These settings are different than the default settings of EN 50549-1 and EN 50549-2.	(See appended table D.8)	P			
	The automatic connection and reconnection is allowed if the abovementioned conditions are met.		Р			
	If, at the power-generating unit connected to the HV distribution network, no distinct sets of conditions can be applied, it is not possible to make a distinction between the two connection modes, the conditions must be chosen such as they meet both sets of conditions.	Not connected to the HV distribution network	N/A			
D.9	Ceasing and reduction of active power on set point		Р			
	This clause is not applicable to the backup power systems specified in §2.2.1.	Not backup power system	N/A			
D.9.1	Ceasing active power	(See appended table D.9)	Р			
	The power-generating unit must comply with the relevant requirements of the applicable standard EN 5054-1 or EN 50549-2 (edition 2019, see clause 4.11.1 « Ceasing active power ») taking into account the additional information specified hereunder.	Comply with EN 50549-1	Р			
	In brief, the requirements in the standards are the following:		Р			
	For modules with a power > 800 W, a logic interface to cease the production of active power within 5 seconds after receiving the instruction is required.		Р			
	Remote operation is optional		Р			
	Respecting the regional regulatory provisions, the DSO can request additional equipment for a remote operation of this logic interface.		Р			
	Unless defined otherwise by the DSO, this logic interface is based on a contact rather than using a communicated protocol.		Р			
D.9.2	Reduction of active power on set point	(See appended table D.9)	Р			
	The requirement of this Section is applicable only to the power-generating units that are part of:		Р			
	• a power-generating module with a maximum power of ≥ 1 MW		N/A			

Page 18 of 79

Report no. 200827076GZU-001

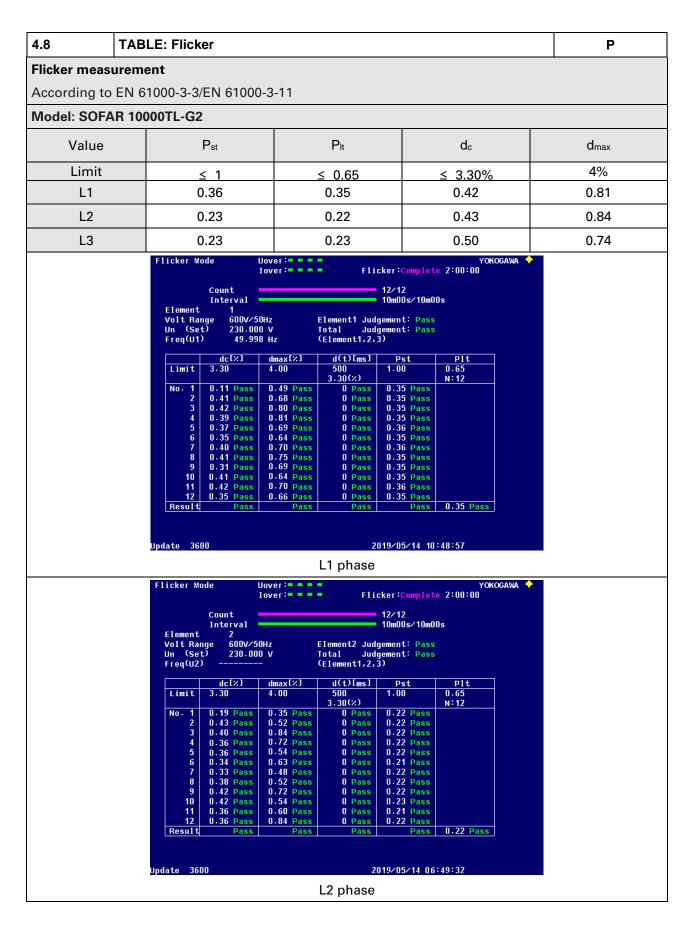
C10/11: ed.2.1, 01 Sep 2019

Clause	Requirement - Test	Result - Remark	Verdict

D.10	Communication – Remote monitoring and control		N/A
	Depending of the modalities specified in section D.10 hereafter, the DSO can request additional equipment for a remote operation of this reduction.		N/A
	In brief, the requirements in the standard are the following: For type B modules: The settings of the limit must be possible with a maximum increment of 10%. Reduction of the power generation to the respective limit in a range of maximum 0,66 % Pn/ s and of minimum 0,33 % Pn/ s Deconnection of the network is allowed when below minimum regulating level Remote operation is optional		P
	 with the regional regulations. The power-generating module must comply with the relevant requirements of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.11.2 « Reduction of active power on set point ») taking into account the additional information specified hereunder. Generally, the power-generating unit complies with this requirement, which is assessed when homologated. Otherwise, if, for example, additional equipment such as a capacitor bank is required in combination with the power-generating unit, this will be evaluated by the DSO during the commissioning procedure. 	Comply with EN 50549-1	Р
	• a power-generating plant with a maximum power of > 250 kVA, if the DSO so requires, in accordance with the regional regulations		Ρ

Appended Table - Testing Result

8.2.3	TAB	LE: Flicker			Р
Flicker mea	surem	ent			
According to	5 EN 61	000-3-3/EN 61000-3-	11		
Model: SOF	FAR 150	000TL-G2			
Value	;	P _{st}	Plt	dc	d _{max}
Limit		≤ 1	≤ 0.65	≤ 3.30%	4%
L1		0.36	0.35	0.47	0.79
L2		0.23	0.22	0.42	0.84
L3		0.23	0.23	0.48	0.79
			wer:==== wer:====================================	YOKOGAWA 🔶 omplete 2:00:00	
		Count Interval	12/12		
		Element 1 Volt Range 600V/50P Un (Set) 230.000 Freq(U1) 49.998	lz Element1 Judgement V Total Judgement	: Pass	
		dct21 Limit 3.30 No. 1 0.11 Pass 2 0.37 Pass 3 0.47 Pass 4 0.39 Pass 5 0.37 Pass 6 0.35 Pass 7 0.40 Pass 8 0.41 Pass 9 0.31 Pass 10 0.37 Pass 10 0.37 Pass 11 0.47 Pass 12 0.36 Pass Result Pass Update 3600	0.68 Pass 0 Pass 0.35 0.78 Pass 0 Pass 0.35 0.79 Pass 0 Pass 0.35 0.69 Pass 0 Pass 0.36 0.64 Pass 0 Pass 0.36 0.64 Pass 0 Pass 0.36 0.70 Pass 0 Pass 0.36 0.75 Pass 0 Pass 0.35 0.78 Pass 0 Pass 0.35 0.78 Pass 0 Pass 0.35 0.79 Pass 0 Pass 0.35 Pass Pass 0 2019/05 L1 Phase ver := = = = = = = = = = = = = = = = = = =	0.65 N:12 Pass	
		Freq(U2) Limit 3.30 No. 1 0.19 Pass 2 0.43 Pass 3 0.40 Pass 4 0.41 Pass 5 0.31 Pass 6 0.37 Pass 8 0.38 Pass 9 0.42 Pass 10 0.42 Pass 12 0.36 Pass Result Pass	0.70 Pass 0 Pass 0.22 0.75 Pass 0 Pass 0.22 0.76 Pass 0 Pass 0.22 0.78 Pass 0 Pass 0.22 0.48 Pass 0 Pass 0.22 0.52 Pass 0 Pass 0.22 0.52 Pass 0 Pass 0.22 0.52 Pass 0 Pass 0.22 0.72 Pass 0 Pass 0.22 0.54 Pass 0 Pass 0.21 0.50 Pass 0 Pass 0.21	t P1t 0.65 N:12 Pass Pass Pass Pass Pass Pass Pass Pas	
		Update 3600		∕14 14∶49∶32	
			L2 phase		



Page 20 of 79

Flicker		Uover:==== Iover:====		cker:Complete	YOKOGAWA 🔶 2:00:00	
E1emen	Count Interval t 3			12/12 10m00s/10m00)s	
Volt R Un (S Freq(U	et) 230.00	0 V	Element3 Judg Total Judg (Element1,2,3	gement: Pass		
	dc[%]	dmax[%]	d(t)[ms]	Pst	Plt	
Limit		4.00	500 3.30(%)	1.00	0.65 N:12	
No. 1	0.12 Pass	0.38 Pass	0 Pass	0.23 Pass		
2		0.56 Pass	0 Pass	0.23 Pass		
3		0.78 Pass	0 Pass	0.23 Pass 0.23 Pass		
4	0.48 Pass 0.35 Pass	0.79 Pass 0.66 Pass	O Pass O Pass	0.23 Pass 0.23 Pass		
6		0.63 Pass	0 Pass	0.23 Pass		
7	0.46 Pass	0.62 Pass	0 Pass	0.23 Pass		
8		0.74 Pass	0 Pass	0.23 Pass		
9	0.42 Pass	0.63 Pass	0 Pass	0.23 Pass		
10		0.62 Pass	0 Pass	0.22 Pass		
11	0.37 Pass	0.72 Pass	0 Pass	0.23 Pass		
12		0.68 Pass	0 Pass	0.23 Pass	<u> </u>	
Resu1	t Pass	Pass	Pass	Pass	0.23 Pass	
Update 3	600		21	019/05/14 12:	:23:48	
			L3 phase			

Intertek

Page 21 of 79

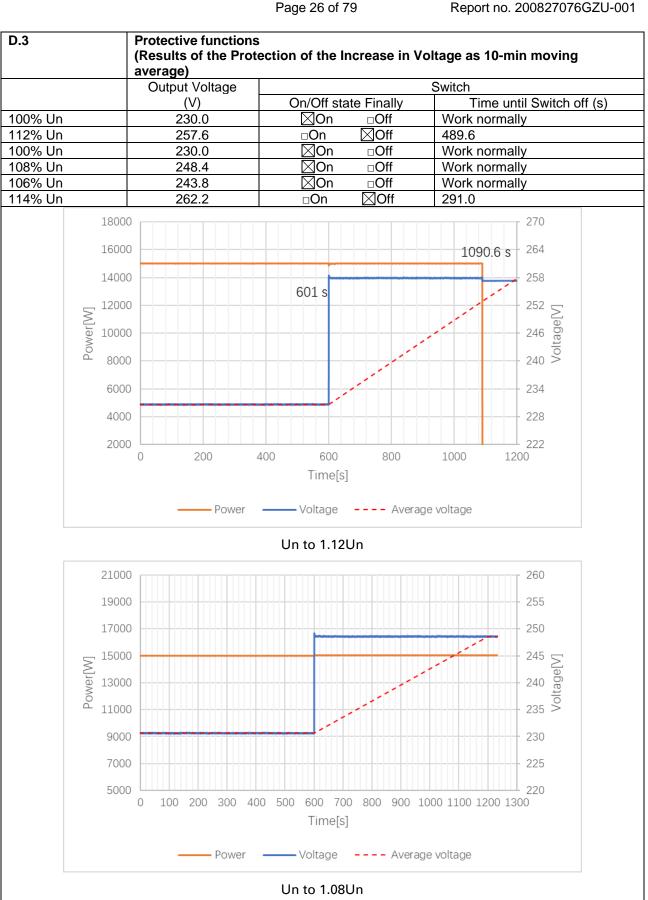
Page 22 of 79

Flicker M	ode	Uover:==== Iover:====		cker:Complet	YOKOGAWA ✦ 2:00:00	
Element	Count Interval 3			12/12 10m00s/10m0	Ds	
Volt Ra Un (Se Freq(U3	t) 230.00	10 V	Element3 Jud Total Jud (Element1,2,3	gement: Pass		
	dc[%]	dmax[%]	d(t)[ms]	Pst	P1t	
Límít	3.30	4.00	500 3.30(%)	1.00	0.65 N:12	
No. 1	0.12 Pass	0.38 Pass	0 Pass	0.23 Pass		
2	0.47 Pass	0.65 Pass	O Pass	0.23 Pass		
3	0.44 Pass	0.57 Pass	0 Pass	0.23 Pass		
4	0.48 Pass	0.64 Pass	0 Pass	0.23 Pass		
5	0.35 Pass	0.66 Pass	0 Pass	0.23 Pass		
67	0.42 Pass 0.46 Pass	0.63 Pass 0.62 Pass	O Pass O Pass	0.23 Pass 0.23 Pass		
8	0.50 Pass		0 Pass	0.23 Pass 0.23 Pass		
9	0.43 Pass	0.63 Pass	0 Pass	0.23 Pass		
10	0.48 Pass	0.62 Pass	0 Pass	0.22 Pass		
11	0.41 Pass	0.72 Pass	0 Pass	0.23 Pass		
12	0.44 Pass	0.68 Pass	0 Pass	0.23 Pass		
Result	Pass	Pass	Pass	Pass	0.23 Pass	
Update 36	nn		2	019/05/14 08	:49:48	
opuate Ju	00			00 10 00		
			L3 phase			

Total Quality. Assured.

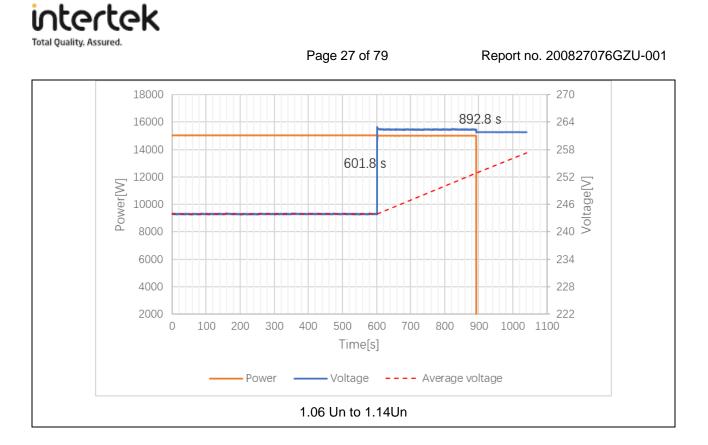
Page 23 of 79

8.2.4	TABL	E: Current harmoni	Р						
Current harmonics emission test for class A limit (According to EN 61000-3-12)									
Model: SOF	AR 150	00TL-G2							
100% rating	power	condition:							
Nr./Orde	r		lh(%)		LIMIT (%)				
		R	S	Т					
2		0.0728	0.0404	0.0583	8.00				
3		0.0648	0.0556	0.0473	21.60				
4		0.0483	0.0190	0.0340	4.00				
5		0.2363	0.1533	0.2318	10.70				
6		0.0281	0.0168	0.0236	2.67				
7		0.2237	0.2481	0.1550	7.20				
8		0.0215	0.0136	0.0135	2.00				
9		0.0468	0.0180	0.0520	3.80				
10		0.0298	0.0299	0.0110	1.60				
11		0.1244	0.1191	0.0805	3.10				
12		0.0318	0.0314	0.0186	1.33				
13		0.0988	0.0858	0.1011	2.00				
THD		0.4954	0.4935	0.4734	23				
PWHD		1.5297	1.7251	1.6732	23				


Page 24 of 79

Pbin(%) Nr./Order 2 3 4 5	L1 Phase (A) Ih(A) 0.0038	L2 Phase (A) Ih(A)	L3 Phase (A)	LIMIT (A)
2 3 4		Ih(A)		
3 4	0.0038		Ih(A)	
4		0.0111	0.0068	1.080
	0.0110	0.0103	0.0075	2.300
5	0.0024	0.0035	0.0027	0.430
	0.0161	0.0227	0.0345	1.140
6	0.0015	0.0016	0.0016	0.300
7	0.0043	0.0160	0.0120	0.770
8	0.0020	0.0015	0.0013	0.230
9	0.0094	0.0054	0.0053	0.400
10	0.0015	0.0015	0.0014	0.184
11	0.0091	0.0031	0.0067	0.330
12	0.0028	0.0020	0.0027	0.153
13	0.0070	0.0023	0.0083	0.210
14	0.0016	0.0014	0.0017	0.131
15	0.0043	0.0015	0.0038	0.150
16	0.0016	0.0009	0.0013	0.115
17	0.0106	0.0194	0.0160	0.132
18	0.0015	0.0015	0.0016	0.102
19	0.0136	0.0150	0.0192	0.118
20	0.0012	0.0010	0.0011	0.092
21	0.0051	0.0040	0.0028	0.107
22	0.0016	0.0012	0.0015	0.084
23	0.0140	0.0184	0.0196	0.098
24	0.0015	0.0015	0.0019	0.077
25	0.0139	0.0173	0.0172	0.090
26	0.0013	0.0009	0.0013	0.071
27	0.0042	0.0020	0.0037	0.083
28	0.0020	0.0010	0.0014	0.066
29	0.0164	0.0175	0.0185	0.078
30	0.0013	0.0013	0.0021	0.061
31	0.0146	0.0158	0.0149	0.073
32	0.0010	0.0011	0.0011	0.058
33	0.0044	0.0015	0.0032	0.068
34	0.0025	0.0012	0.0016	0.054
35	0.0143	0.0138	0.0144	0.064
36	0.0014	0.0015	0.0025	0.051
37	0.0135	0.0124	0.0127	0.061
38	0.0033	0.0017	0.0031	0.048
39	0.0029	0.0017	0.0031	0.058

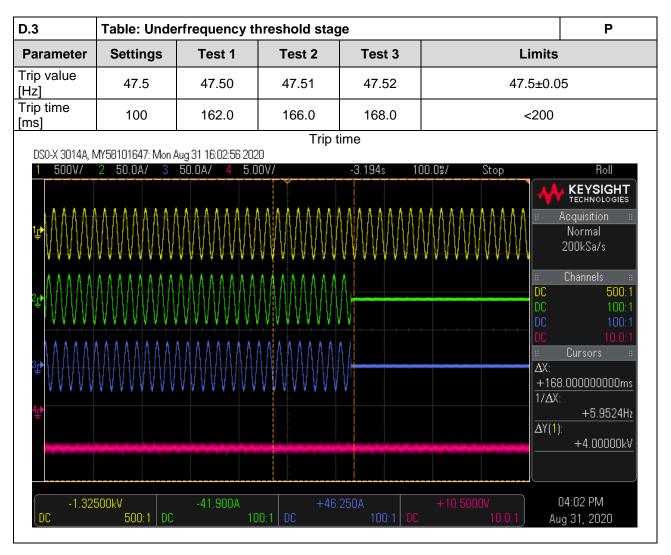
Total Quality. Assured.


Page 25 of 79

D.3	Table: Overvoltage threshold stage					Р
Parameter	Settings	Test 1	Test 2	Test 3	Limits	
Trip value L1 [V]	264.5	264.29	264.13	264.19	264.5±2.3	3
Trip time [ms]	100	182.0	172.0	176.0	<200	
Trip value L2[V]	264.5	264.21	264.13	264.43	264.5±2.3	3
Trip time [ms]	100	172.0	164.0	182.0	<200	
Trip value L3[V]	264.5	264.38	264.18	264.34	264.5±2.3	3
Trip time [ms]	100	180.0	180.0	181.0	<200	
Trip value L1L2L3 [V]	264.5	264.59	264.16	264.18	264.5±2.3	3
Trip time [ms]	100	180.0	184.0	178.0	<200	
			Trip t	ime		
DSO-X 3014A, 1 500V/	MY58101647: Mon 2 500V/ 3	-	20 .0A7	-2.702s 10	00.0≌/ Stop	Roll
						KEYSIGHT TECHNOLOGIES cquisition :: Normal 200kSa/s Channels :: 500:1 500:1 500:1 100:1 Cursors :: 0000000000ms +5.4348Hz +3.97500kV
= \	3125kV 500:1 DC	-412.500V	+462 00:1 DC	.500V 500:1 DC		3:39 PM 1 31, 2020

Total Quality. Assured.

intertek


Total Quality. Assured.

Page 28 of 79

D.3	Table: Unde	Р				
Parameter	Settings	Test 1	Test 2	Test 3	Limits	
Trip value L1 [V]	184	183.73	184.16	184.18	184±2.3	
Trip time [ms]	100	164	160	170	<200	
Trip value L2[V]	184	184.15	184.07	184.96	184±2.3	
Trip time [ms]	100	168	166	164	<200	
Trip value L3[V]	184	183.83	184.04	183.99	184±2.3	
Trip time [ms]	100	172	160	158	<200	
Trip value L1L2L3 [V]	184	184.55	184.27	184.36	184±2.3	
Trip time [ms]	100	168	164	166	<200	
			Trip t	ime		
DSO-X 3014A, 1 500V/	MY58101647: Mon 2 500V/ 3	Aug 31 15:31:33 202 500V/ 4 50	20 .0A7	-2.658s 10	00.0≌/ Stop	Roll
						KEYSIGHT TECHNOLOGIES Normal 200kSa/s Channels 500:1 500:1 500:1 0001 100:1 Cursors +5.8140Hz +3.97500kV
-1.33 DC	125kV 500:1 DC	-412.500V 50	+462 00:1 DC	.500V 500:1 DC		3:31 PM g 31, 2020

Total Quality. Assured.

Page 29 of 79

Total Quality. Assured.

Page 30 of 79

0.3	Table: Overfrequency threshold stage							
Parameter	Settings	Test 1	Test 2	Test 3	Limits			
rip value Hz]	51.5	51.50	51.50	51.50	51.5±0.0	95		
rip time ns]	100	166.0	168.0	160.0 <2				
Trip time								
DSO-X 3014A, 1 500V/	MY58101647: Mon 2 50.0A/ 3	Aug 31 15:58:26 202 50.0A/ 4 5.0	20 10 V /	-3.226s 10	00.0≌/ Stop	Roll		
						+5.9524Hz		
-1.32 DC	2500kV 500:1 DC	-41.900A ; 1(+46. 00:1 DC	.250A 100:1 DC)3:57 PM 1g 31, 2020		

Total Quality. Assured.

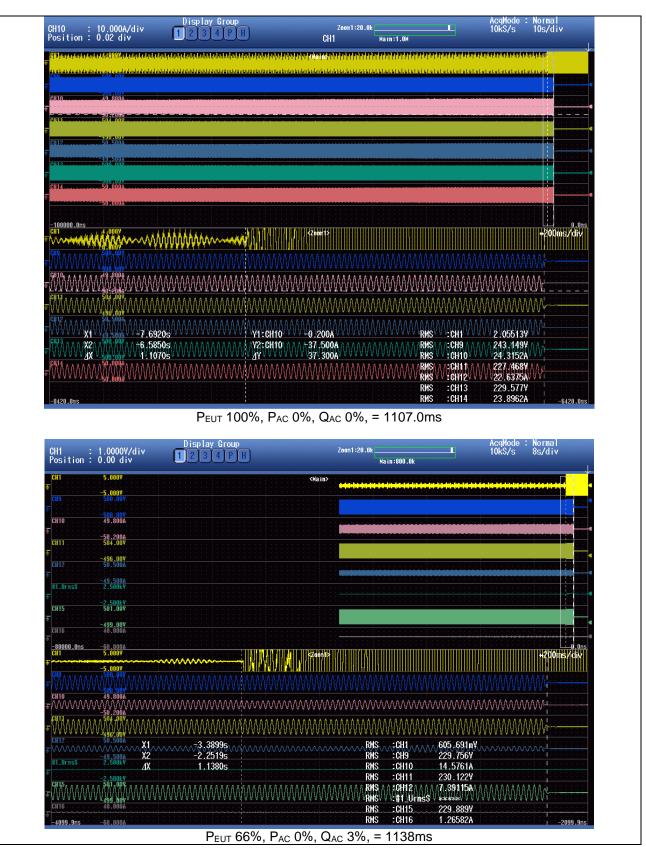
Page 31 of 79

Report no. 200827076GZU-001

D.3	Т	Table: Islanding									Р	
No.	PEUT ¹⁾ (% of EUT rating)	Reactive load (% of QL in 6.1.d)1)	PAC ²⁾ (% of nominal)	QAC ³⁾ (% of nominal)	Run on time (ms)	PEUT (KW)	Actual Qf	VDC	Remarks ⁴⁾			t)
1	100	100	0	0	1107	14.5	1.00	850	Test	A	at	BL
2	66	66	0	0	1042	9.9	1.00	560	Test	В	at	BL
3	33	33	0	0	1016	4.5	1.00	230	Test	C	at	BL
4	100	100	-5	-5	418	14.5	0.97	850	Test	A	at	IB
5	100	100	-5	0	992	14.5	0.95	850	Test	A	at	IB
6	100	100	-5	5	576	14.5	0.93	850	Test	A	at	IB
7	100	100	0	-5	1051	14.5	1.03	850	Test	A	at	IB
8	100	100	0	5	266	14.5	0.96	850	Test	A	at	IB
9	100	100	5	-5	752	14.5	1.08	850	Test	A	at	IB
10	100	100	5	0	1073	14.5	1.06	850	Test	A	at	IB
11	100	100	5	5	212	14.5	1.03	850	Test	A	at	IB
12	66	66	0	-5	600	9.9	1.04	560	Test	В	at	IB
13	66	66	0	-4	971	9.9	1.04	560	Test	В	at	IB
14	66	66	0	-3	1051	9.9	1.03	560	Test	В	at	IB
15	66	66	0	-2	1012	9.9	1.03	560	Test	В	at	IB
16	66	66	0	-1	1028	9.9	1.01	560	Test	В	at	IB
17	66	66	0	1	1037	9.9	0.99	560	Test	В	at	IB
18	66	66	0	2	971	9.9	0.99	560	Test	В	at	IB
19	66	66	0	3	1138	9.9	0.98	560	Test	В	at	IB
20	66	66	0	4	1026	9.9	0.98	560	Test	В	at	IB
21	66	66	0	5	948	9.9	0.98	560	Test	В	at	IB
22	33	33	0	-5	533	4.5	1.02	230	Test	С	at	IB
23	33	33	0	-4	589	4.5	1.02	230	Test	С	at	IB
24	33	33	0	-3	948	4.5	1.01	230	Test	С	at	IB
25	33	33	0	-2	515	4.5	1.01	230	Test	С	at	IB
26	33	33	0	-1	825	4.5	1.00	230	Test	С	at	IB
27	33	33	0	1	808	4.5	0.98	230	Test	С	at	IB
28	33	33	0	2	633	4.5	0.98	230	Test	С	at	IB
29	33	33	0	3	545	4.5	0.98	230	Test	С	at	IB
30	33	33	0	4	967	4.5	0.98	230	Test		at	IB
31	33	33	0	5	839	4.5	0.97	230	Test	С	at	IB
Domo				,	000		0.07	200				

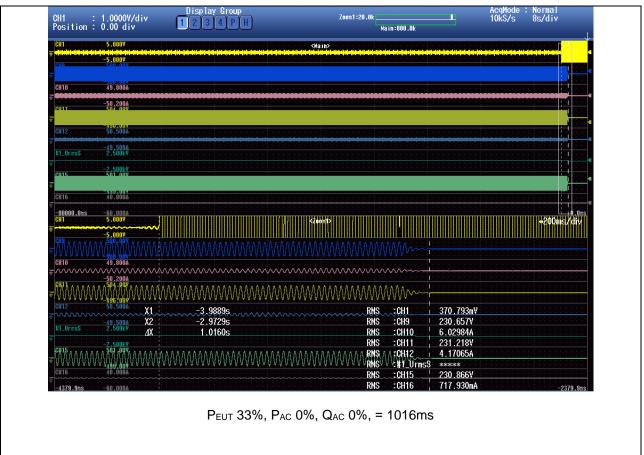
Remark:

¹⁾ PEUT: EUT output power


²⁾ PAC: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0% test condition value.

³⁾ QAC: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0% test condition value.

⁴⁾ BL: Balance condition, IB: Imbalance condition.


⁵⁾ *Note: test condition A (100%): If any of the recorded run-on times are longer than the one recorded for the rated balance condition, i.e. test procedure 6.1 f), then the non-shaded parameter combinations (no.32~47) also require testing.

Page 33 of 79

Report no. 200827076GZU-001

Note: CH10, CH12,CH16 denotes current of EUT; CH1 denotes current of signal (the signal from Grid), CH9,CH11,CH15 denotes Voltage of EUT

Page 34 of 79

		TABLE: Single fault tolerance Refer to EN 50549-1:2019								
a			bient temp	perature (°C)	5					
			del/type o	f power supp	V simulator					
No.	compone No.	ent	fault	test voltage (V)	test time	fuse No.	fuse current (A)		result	
1.	СҮЗ		S-C	850	1min				PCE Shutdown, Q9, Q10, Q11, Q12, Q13, Q14, Q15, Q16, Q17, Q18 damaged. No	
2.	EC2		s-c	850	1min				hazard. PCE Shutdown, C43, C44 damaged. No hazard.	
3.	R131		S-C	850	1min				LCD displays 'ID27' for times and then display Recoverable.	s 'ID69'.
4.	R132		S-C	850	1min				No hazard, no damaged. LCD displays 'ID27' for three times and then displays 'ID69'. Recoverable.	
				850					No hazard, no damaged. LCD displays 'ID27' for three times and then displays 'ID69'.	
5.	R150		S-C		1min				Recoverable. No hazard, no damage	
6.	R151		S-C	850	1min				LCD displays 'ID27' for times and then display Recoverable.	s 'ID69'.
7.	C3		S-C	850	1min				No hazard, no damage LCD displays 'ID02'. Recoverable.	ed.
				050					No hazard, no damage	ed.
8.	R21		S-C	850 850	1min				Work as normal.	
9. 10.	R20 R27		o-c s-c	850	1min 1min				Work as normal. LCD displays 'ID24' for three times and then displays 'ID67'. Recoverable.	
									No hazard, no damage	ed.
11.	R26		0-C	850	1min				LCD displays 'ID02'. Recoverable.	
									No hazard, no damage	
12.	R33		S-C	850	1min				LCD displays 'ID24' for times and then display Recoverable.	s 'ID67'.
									No hazard, no damage	ea.

Total Quality. Assured.

Page 35 of 79

		1				1
13.	13. R32	о-с	850	1min		 LCD displays 'ID02'. Recoverable.
		•••				No hazard, no damaged.
14.	R39	S-C	850	1min		 LCD displays 'ID24' for three times and then displays 'ID67'. Recoverable.
						No hazard, no damaged.
15.	R38	о-с	850	1min		 LCD displays 'ID02'. Recoverable.
						No hazard, no damaged.
16.	R45	s-c	850	1min		 LCD displays 'ID27'. Recoverable.
						No hazard, no damaged.
17.	R44	о-с	850	1min		 LCD displays 'ID27'. Recoverable.
						No hazard, no damaged.
18.	C112	S-C	850	1min		 The monitor shutdown. Recoverable.
						No hazard, no damaged.
19.	CY5	S-C	850	1min		 Work as normal.
20.	R246	S-C	850	1min		 LCD displays 'ID27'. Recoverable.
						No hazard, no damaged.
	R271	s-c	850	1min		The EUT cannot start, LCD displays "ID56'.
21.						 Recoverable. No hazard, no damaged.
		0-C		1min		The EUT cannot start, LCD displays "ID56'.
23.	R268		850			 Recoverable. No hazard, no damaged.
						The EUT cannot start, LCD displays "ID56'.
24.	R283	S-C	850	1min		 Recoverable.
						No hazard, no damaged.
	R282					The EUT cannot start, LCD displays "ID56'.
25.		0-C	850	1min		 Recoverable.
						No hazard, no damaged.
	R88	S-C	050	850 10min		PCE makes noisy.
26.			850			 No hazard, no damaged.
27.	R90	0 s-c	s-c 850	10min		 PCE makes noisy.
21.						 No hazard, no damaged.
28.	R201	1 s-c 850	850	1min		 LCD displays 'ID52'. Recoverable.
20.						No hazard, no damaged.

Page 36 of 79

-				1			
29. R214	S-C	850	1min			LCD displays 'ID52'. Recoverable.	
						No hazard, no damaged.	
Q25 pin1-2	s-c	850	1min			LCD displays 'ID52'. Recoverable.	
F						No hazard, no damaged.	
R50	S-C	850	1min			PCE Shutdown, U1 damaged. No hazard.	
R47	S-C	850	1min			PCE Shutdown, no damaged. No hazard.	
C20	S-C	850	1min			PCE Shutdown, D1, D3 damaged. No hazard.	
R167	S-C	850	1min			LCD displays 'ID24'. Recoverable.	
						No hazard, no damaged.	
RI 1 Pin3-4	8-0	850	1min			The EUT cannot start, LCD displays "ID55'.	
	3-0		Imin			Recoverable.	
						No hazard, no damaged.	
		850				The EUT cannot start, LCD displays "ID55'.	
RL3 Pin3-4	S-C	850	1min			Recoverable.	
						No hazard, no damaged.	
RL5 Pin3-4	S-C	S-C	850	1min			The EUT cannot start, LCD displays "ID55'. Recoverable.
						No hazard, no damaged.	
		050	1min			PCE Shutdown, LCD displays 'ID53'.	
C394	4 s-c	850				Recoverable.	
						No hazard, no damaged.	
						PCE Shutdown, LCD displays 'ID53'.	
RC609	S-C	850	1min			Recoverable.	
						No hazard, no damaged.	
		<u> </u>				PCE Shutdown, LCD displays 'ID53'.	
RC649	0-C	850	1min			Recoverable.	
						No hazard, no damaged.	
CC209	S-C	850	1min			PCE Shutdown, Q9 damaged. No hazard.	
CC224	S-C	850	1min			PCE Shutdown, Q12 damaged. No hazard.	
CC234	S-C	850	1min			PCE Shutdown, Q15 damaged. No hazard.	
	Q25 pin1-2 R50 R47 C20 R167 RL1 Pin3-4 RL3 Pin3-4 RL5 Pin3-4 C394 RC609 RC609 RC609 CC224	Q25 pin1-2 s-c R50 s-c R47 s-c C20 s-c R167 s-c RL1 Pin3-4 s-c RL3 Pin3-4 s-c RL5 Pin3-4 s-c C394 s-c RC609 s-c RC609 s-c C209 s-c C224 s-c	N2.14 3°C 8°C Q25 pin1-2 s-c 850 R50 s-c 850 R47 s-c 850 C20 s-c 850 R167 s-c 850 RL1 Pin3-4 s-c 850 RL3 Pin3-4 s-c 850 RL5 Pin3-4 s-c 850 RC609 s-c 850 RC609 s-c 850 RC649 o-c 850 C209 s-c 850 C209 s-c 850	N214 SC Imm Q25 pin1-2 s-c 850 1min R50 s-c 850 1min R47 s-c 850 1min C20 s-c 850 1min R167 s-c 850 1min RL1 Pin3-4 s-c 850 1min RL3 Pin3-4 s-c 850 1min RL5 Pin3-4 s-c 850 1min RC609 s-c 850 1min RC609 s-c 850 1min RC649 o-c 850 1min CC209 s-c 850 1min CC209 s-c 850 1min	IAL 14* ISC IAMA IAMA IAMA Q25 pin1-2 S-C 850 1min R50 S-C 850 1min R47 S-C 850 1min C20 S-C 850 1min R167 S-C 850 1min R167 S-C 850 1min RL1 Pin3-4 S-C 850 1min RL3 Pin3-4 S-C 850 1min RL5 Pin3-4 S-C 850 1min C394 S-C 850 1min RC609 S-C 850 1min RC649 o-c 850 1min RC649 S-C 850 1min C2209 S-C 850 1min C224 S-C 850 1min	International Sec Sec	

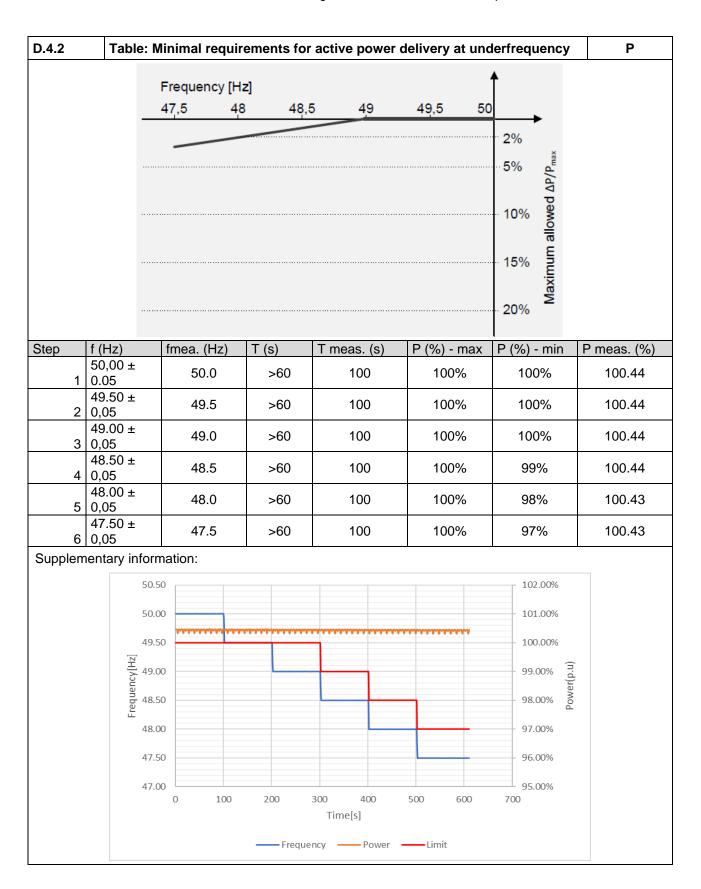
intertek Total Quality. Assured.

Page 37 of 79

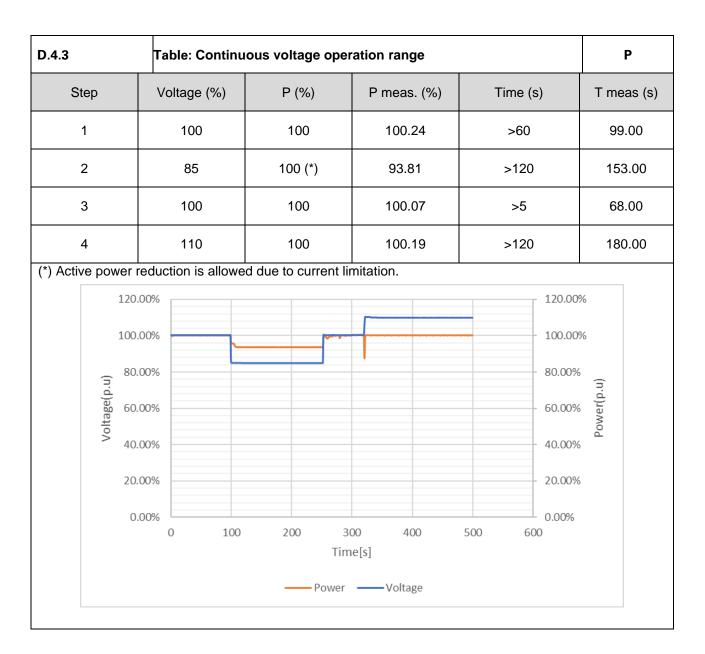
						PCE Shutdown, LCD displays
44.	CC243	S-C	850	1min	 	'ID53'.
	00210	00				Recoverable.
						No hazard, no damaged.
45.	CC207	S-C	850	1min	 	PCE Shutdown, Q7 damaged. No hazard.
46.	C208	s-c	050	1min	 	PCE Shutdown, Q8 damaged.
40.	0200	30	850			No hazard.
						LCD displays 'ID55'.
47.	CC222	S-C	850	1min	 	Recoverable.
						No hazard, no damaged.
48.	UC609A	S-C	850	1min	 	Work as normal.
	Pin4-5					
49.	UC637	S-C	850	1min	 	Work as normal.
	Pin12-13			4		
50.	UC634	S-C	850	1min	 	Work as normal.
	pin5-6					
						PCE Shutdown, LCD displays 'ID49'.
51.	CC132	S-C	850	1min	 	Recoverable.
						No hazard, no damaged.
						PCE Shutdown, LCD displays
	00/0 0 0		850			ʻID14'.
52.	QC40 D-S	S-C	050	1min	 	Recoverable.
						No hazard, no damaged.
			850			PCE Shutdown, LCD displays 'ID59'.
53.	RC459	S-C	000	1min	 	Recoverable.
						No hazard, no damaged.
			050			PCE Shutdown, LCD displays 'ID55'.
54.	RL6	S-C	850	1min	 	Recoverable.
						No hazard, no damaged.
			050			PCE Shutdown, LCD displays 'ID55'.
55.	RL4	S-C	850	1min	 	Recoverable.
						No hazard, no damaged.
			050			PCE Shutdown, LCD displays 'ID55'.
56.	RL2	S-C	850	1min	 	Recoverable.
						No hazard, no damaged.

Total Quality. Assured.

Page 38 of 79

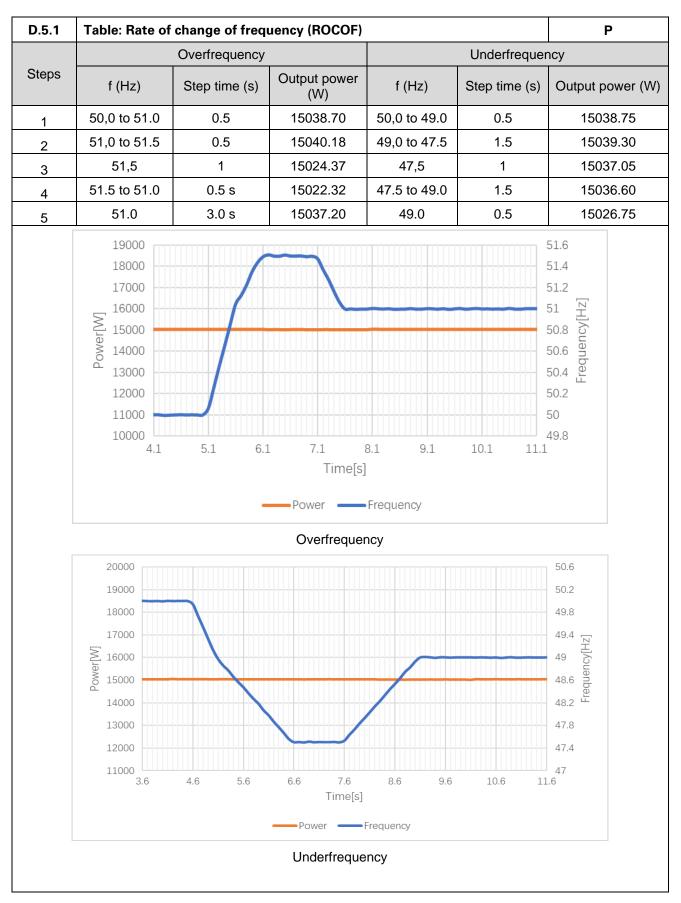

57.	R162	S-C	850	1min			PCE Shutdown, LCD displays 'ID24'. Recoverable. No hazard, no damaged.		
58.	R177	0-C	850	1min			PCE Shutdown, LCD displays 'ID24'. Recoverable. No hazard, no damaged.		
59.	R187	0-C	850	1min			PCE Shutdown, LCD displays 'ID24'. Recoverable. No hazard, no damaged.		
supplementary information:									
s-c: she	ort-circuited, o	o-c: open-	circuited, o-	l: overlo	ad.				

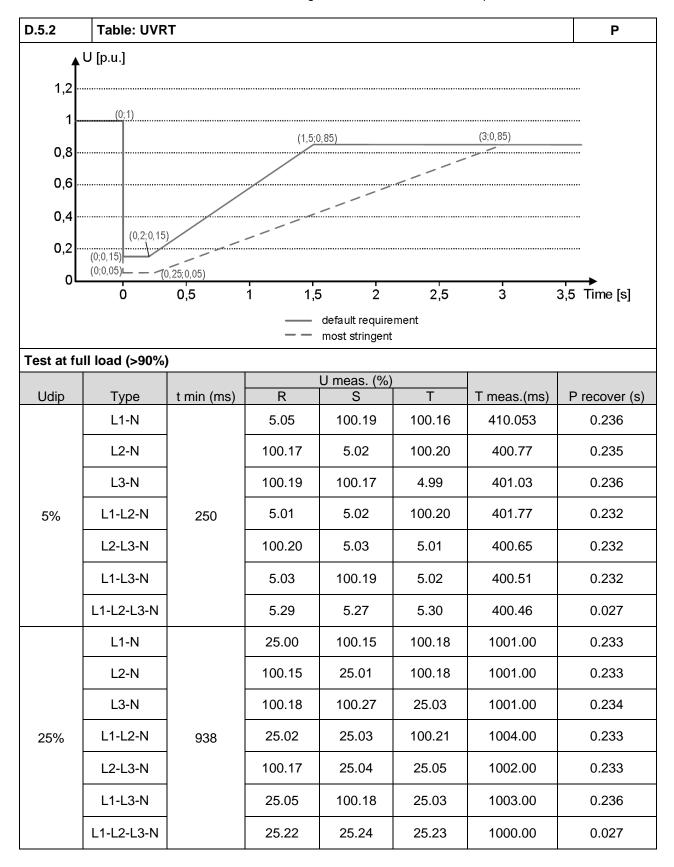
Total Quality. Assured.


Page 39 of 79

D.4.1	Table: Oper	rating frequency r	ange			Р
	Free	juency doma	in	Duration		
	47,5	Hz – 49,0 H	Iz	30 minute	s	
	49,0	Hz – 51,0 H	Iz	Permanen	t	
	51,0	Hz – 51,5 H	Iz	30 minute	s	
Steps	f (Hz)	f (Hz) Measured	Time	Time measured	Comments	
1	47.5 Hz	47.50	>30 min	35.43 min	Operated norm	ally.
2	49.0 Hz	49.00	Permanent	109.01 min	Operated norm	ally.
3	51.0 Hz	51.00	Permanent	116.92 min	Operated norm	ally.
4	51.5 Hz	51.50	>30 min	35.34 min	Operated norm	ally.
5	52.5 Hz	52.50	>15 min*	20.08 min	Operated norm	ally.
	18000					53
	16000					52
	14000					- 51
	12000					50
	10000					- 49
	8000					48
	6000 0	2000 4000 6000	0 8000 100	00 12000 14000	16000 18000 20	47 000
		-	Power	Frequency		

Page 40 of 79

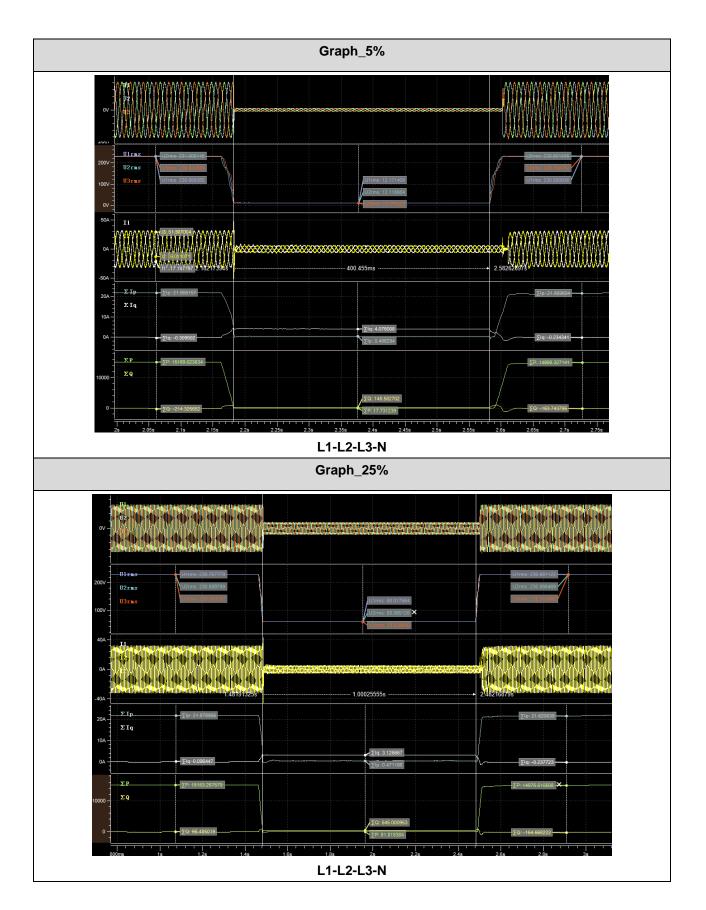



Total Quality. Assured.

Page 42 of 79

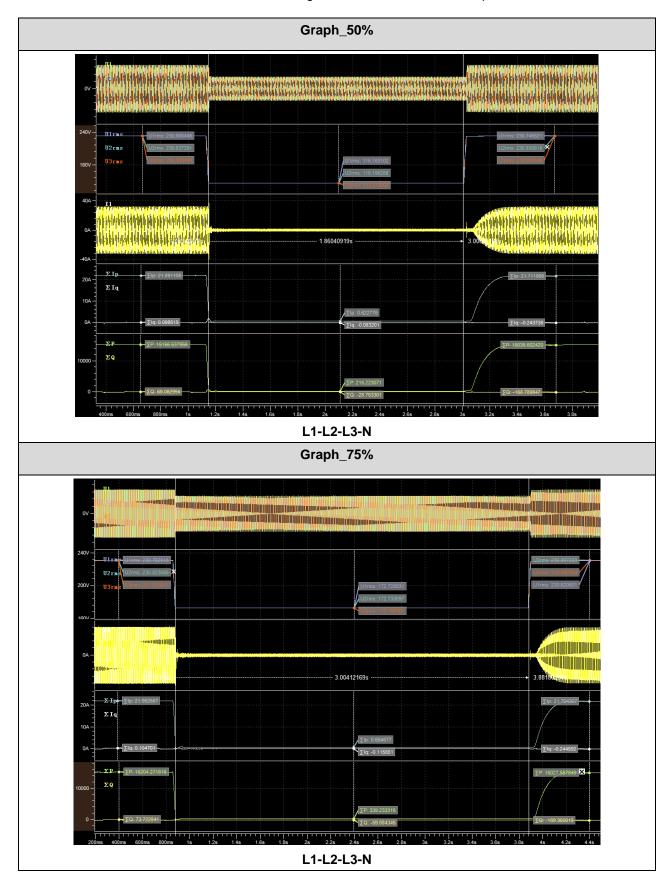
Total Quality. Assured.

Page 43 of 79


Total Quality. Assured.

Page 44 of 79

	L1-N		50.05	100.17	100.17	1861.00	0.231
	L2-N		100.13	50.05	100.18	1860.00	0.232
	L3-N		100.17	100.16	50.08	1860.00	0.234
50%	L1-L2-N	1797	50.05	50.06	100.17	1860.00	0.236
	L2-L3-N		100.19	50.06	50.08	1857.00	0.237
	L1-L3-N		50.07	100.16	50.07	1861.00	0.231
	L1-L2-L3-N		50.07	50.08	50.09	1860.00	0.234
	L1-N		75.10	100.14	100.15	3004.00	0.234
	L2-N		100.15	75.10	100.21	3005.00	0.236
	L3-N		100.16	100.17	75.12	3001.00	0.236
75%	L1-L2-N	2656	75.10	75.10	100.16	3008.00	0.234
	L2-L3-N		8.78	75.10	75.17	3010.00	0.233
	L1-L3-N		75.10	100.18	75.14	3000.00	0.233
-	L1-L2-L3-N		75.10	75.10	75.13	3004.00	0.232



Page 45 of 79

Page 46 of 79

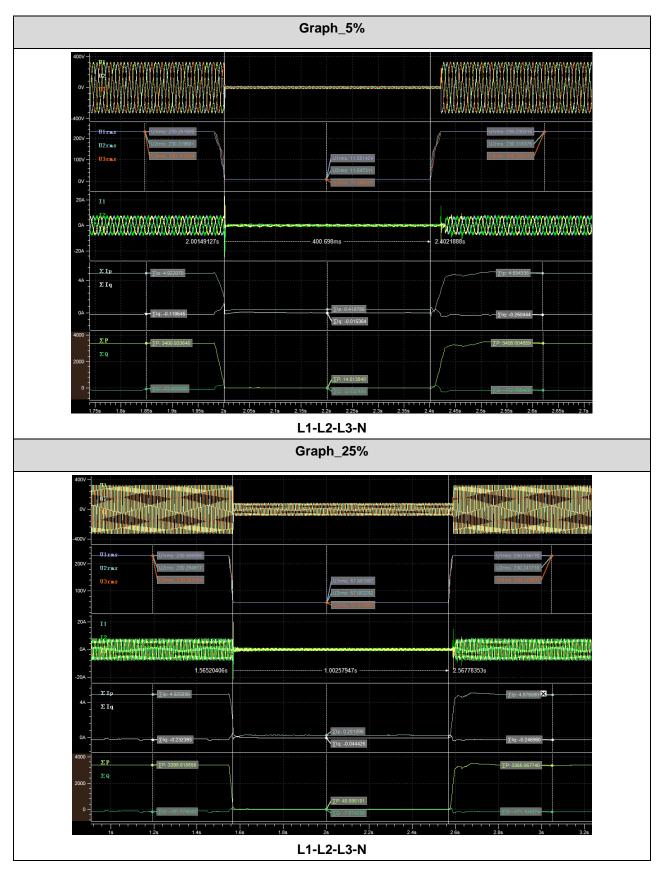
Page 47 of 79

Test at p	artial load (30	%)					
				U meas. (%)			
Udip	Туре	t min (ms)	R	S	Т	T meas.(ms)	P recover (s)
	L1-N		5.03	100.18	100.21	402.00	0.081
	L2-N		100.17	5.01	100.20	400.00	0.083
	L3-N		100.18	100.18	5.05	400.00	0.082
5%	L1-L2-N	250	5.00	5.03	100.20	401.00	0.082
	L2-L3-N		100.17	5.00	5.00	401.00	0.027
	L1-L3-N		5.02	100.20	5.03	400.00	0.082
	L1-L2-L3-N		5.02	5.02	5.03	400.00	0.027
	L1-N		25.01	100.15	100.20	1005.00	0.083
	L2-N		100.17	25.00	100.17	1001.00	0.081
	L3-N		100.16	100.17	25.01	1002.00	0.082
25%	L1-L2-N	938	25.02	25.04	100.19	1005.00	0.082
	L2-L3-N		100.16	25.44	25.03	1002.00	0.027
	L1-L3-N		25.04	100.16	25.01	1000.00	0.083
	L1-L2-L3-N		25.03	25.02	25.05	1002.00	0.027
	L1-N		50.06	100.15	100.19	1866.00	0.082
	L2-N		100.16	50.04	100.17	1860.00	0.081
	L3-N		100.17	100.17	50.06	1864.00	0.084
50%	L1-L2-N	1797	50.07	50.06	100.19	1868.00	0.082
	L2-L3-N		100.17	50.05	50.07	1858.00	0.082
	L1-L3-N		50.06	100.15	50.08	1861.00	0.084
	L1-L2-L3-N		50.07	50.06	50.07	1864.00	0.029
	L1-N		75.12	100.15	100.17	3006.00	0.083
75%	L2-N	2656	100.14	75.10	100.17	3005.00	0.084
10%	L3-N	2000	100.15	100.17	75.12	3006.00	0.084
	L1-L2-N		75.11	75.12	100.20	3002.00	0.079

Total Quality. Assured.

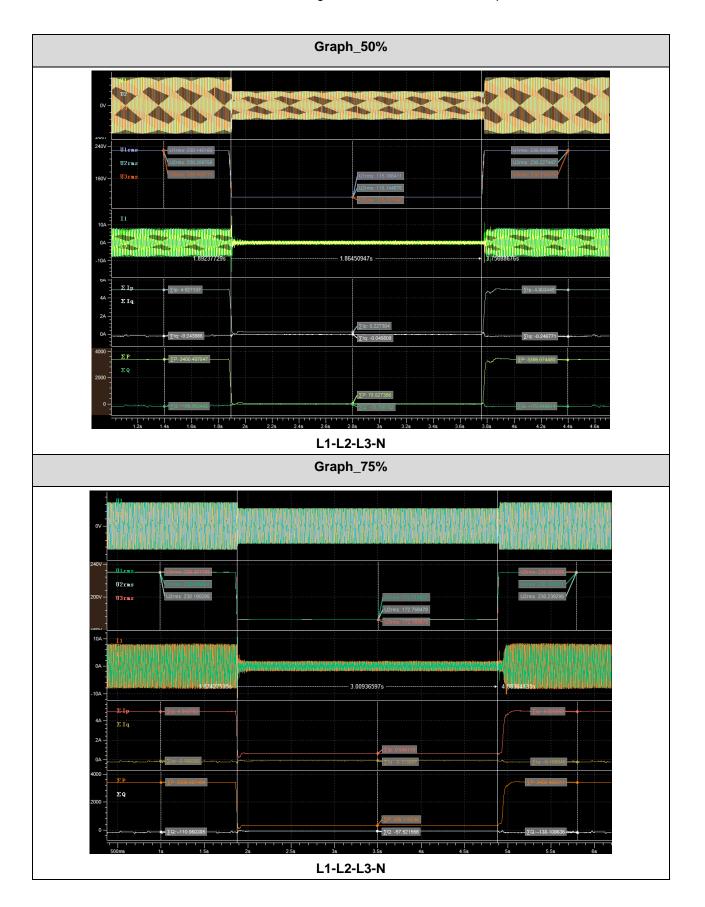
Page 48 of 79

Report no. 200827076GZU-001


L2-L3-N	100.15	75.11	75.15	3003.00	0.081
L1-L3-N	75.13	100.14	75.12	3008.00	0.082
L1-L2-L3-N	75.09	75.11	75.11	3009.00	0.083

Remark:

The tests are performed together with clause 4.7.4.2.2 Zero current mode and enabling of default setting: undervoltage of 50%Un



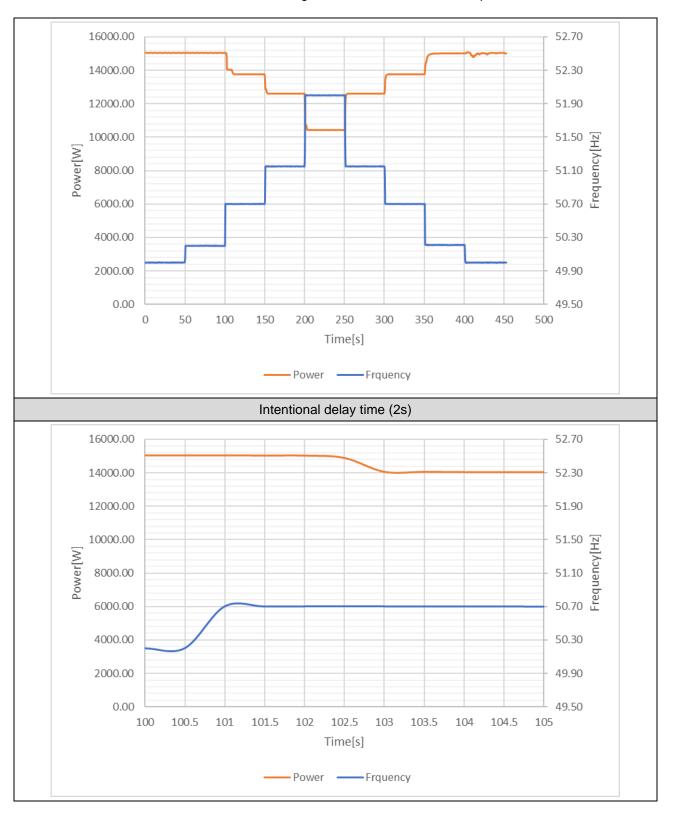
Page 49 of 79

Page 50 of 79

Total Quality. Assured.

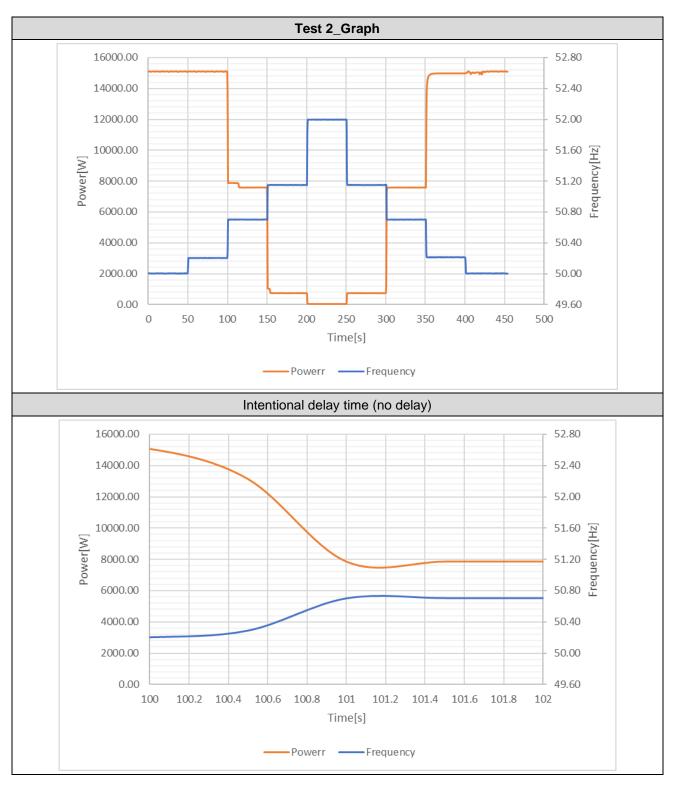
Page 51 of 79

D.6.1 Table: F	Power res	sponse to ov	ver frequency				Р
k		100% Pn, f1	=50.2Hz; droop	=12%; f-stop	o deactivated	l, with delay o	f2s
Test 1	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	The response times Tan_90 % <2s	For The settling times T≤20s
50Hz ± 0.01Hz	50.00	15041.15	15000.00				
50.2Hz ± 0.01Hz	50.20	15040.29	15000.00				
50.70Hz ± 0.01Hz	50.70	13758.82	13750.00	8.82	± 1500	1.9	9.0
51.15Hz ± 0.01Hz	51.15	12604.94	12625.00	-20.06	± 1500	1.9	3.5
52.0Hz ± 0.01Hz	52.00	10442.31	10500.00	-57.69	± 1500	1.0	3.0
51.15Hz ± 0.01Hz	51.15	12615.76	12625.00	-9.24	± 1500	1.3	2.0
50.70Hz ± 0.01Hz	50.70	13763.59	13750.00	13.59	± 1500	1.8	3.0
50.2Hz ± 0.01Hz	50.20	15006.22	15000.00				
50Hz ± 0.01Hz	50.00	15000.32	15000.00				
		100% Pr	n, f1 =50.2Hz; d	roop=2%; f-:	stop deactiva	ited, no delay	
Test 2	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	The response times Tan_90 % <2s	For The settling times T≤20s
50Hz ± 0.01Hz	50.00	15081.11	15000.00				
50.2Hz ± 0.01Hz	50.20	15062.18	15000.00				
50.70Hz ± 0.01Hz	50.70	7648.26	7500.00	148.26	± 1500	0.9	14.5
51.15Hz ± 0.01Hz	51.15	754.79	750.00	4.79	± 1500	0.9	3.7
52.0Hz ± 0.01Hz	52.00	51.55	0.00	51.55	± 1500	0.6	1.0
51.15Hz ± 0.01Hz	51.15	759.84	750.00	9.84	± 1500	0.5	0.6
50.70Hz ± 0.01Hz	50.70	7580.97	7500.00	80.97	± 1500	0.9	1.3
50.2Hz ± 0.01Hz	50.20	14890.15	15000.00			1.5	3.4
50Hz ± 0.01Hz	50.00	15050.66	15000.00				

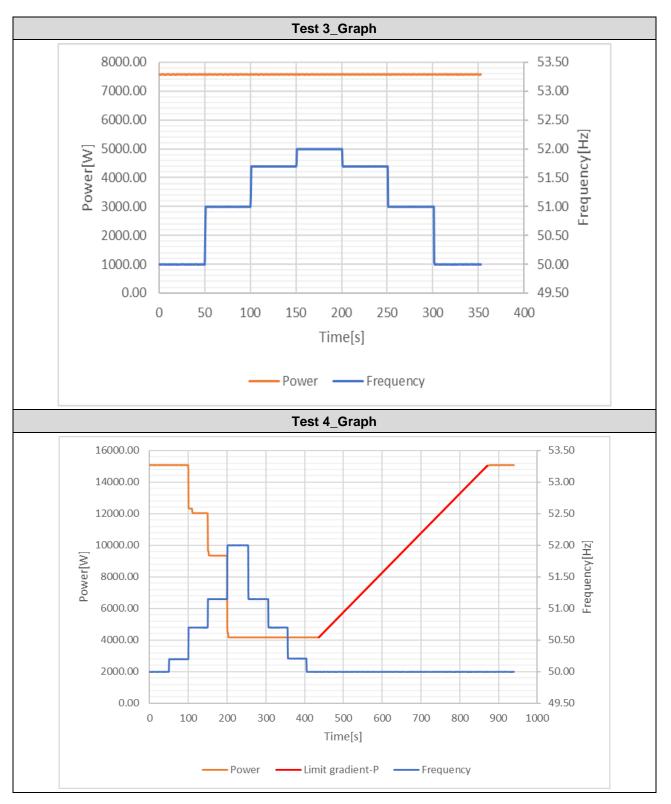


Page 52 of 79

		50% Pn	, f1 =52.0Hz; dr	roop=5%; f-s	top deactivat	ed, no delay	
Test 3	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	The response times Tan_90 % <2s	For The settling times T≤20s
50Hz ± 0.01Hz	50.00	7583.99					
51.0Hz ± 0.01Hz	51.00	7584.39	7500.00	84.39	± 1500		
51.70Hz ± 0.01Hz	51.70	7584.58	7500.00	84.58	± 1500		
52.0Hz ± 0.01Hz	52.00	7584.65	7500.00	84.65	± 1500		
51.70Hz ± 0.01Hz	51.70	7584.62	7500.00	84.62	± 1500		
51.00Hz ± 0.01Hz	51.00	7584.46	7500.00	84.46	± 1500		
50Hz ± 0.01Hz	50.00	7584.16					
			Hz; droop=5%;	-	, no delay, D	eactivation tir	ne t _{stop} 30s
Test 4	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	The response times Tan_90 % <2s	For The settling times T≤20s
50Hz ± 0.01Hz	50.00	15079.09	15000.00				
50.2Hz ± 0.01Hz	50.20	15075.24	15000.00				
50.70Hz ± 0.01Hz	50.70	12079.04	12000.00	79.04	± 1500	1.0	11
51.15Hz ± 0.01Hz	51.15	9337.06	9300.00	37.06	± 1500	1.0	3.1
52.0Hz ± 0.01Hz	52.00	4157.84	4200.00	-42.16	± 1500	0.7	2.7
51.15Hz ± 0.01Hz	51.15	4158.20	4200.00	-41.80	± 1500		
50.70Hz ± 0.01Hz	50.70	4158.22	4200.00	-41.78	± 1500		
50.2Hz ± 0.01Hz	50.20	4158.26	4200.00	79.04	± 1500		
50Hz ± 0.01Hz	50.00	15075.26	4200.00				



Page 53 of 79



Page 54 of 79

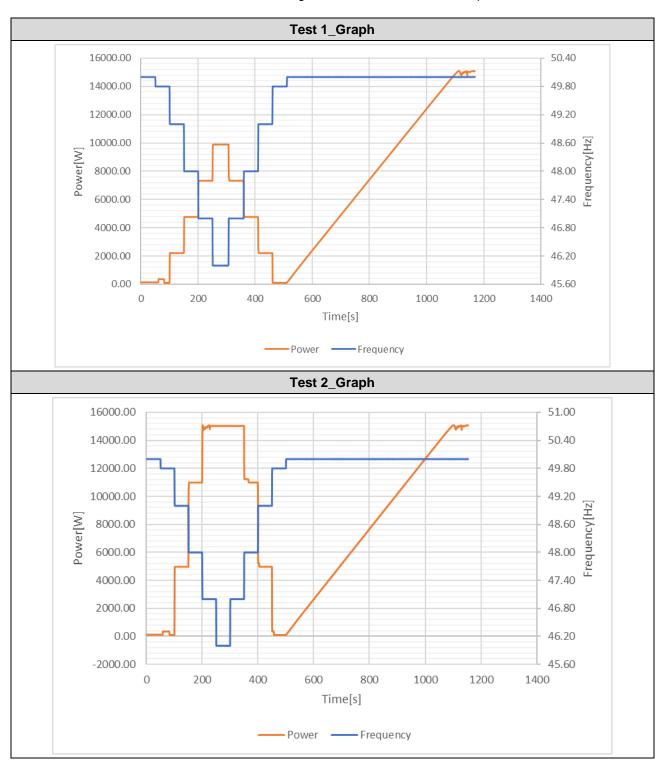
intertek Total Quality. Assured.

Page 55 of 79

Page 56 of 79

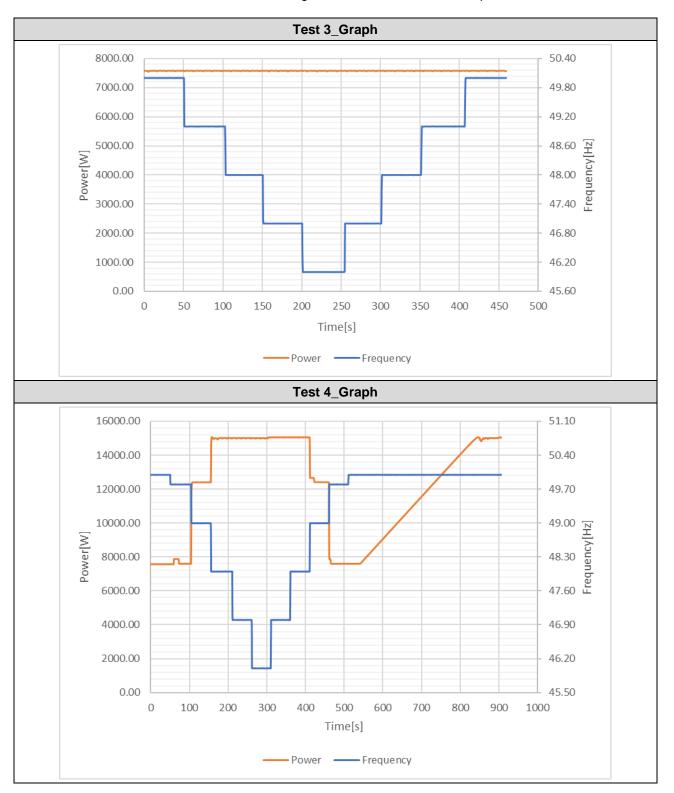
D.6.2 Table:	Power res	sponse to u	nder frequency	y			Р	
Test 1	Image: Test 1 0% Pn, f1 =49.8Hz; droop=12%; with delay of 2 s							
	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	The response times Tan_90 % <10s	For The settling times T≤30s	
50Hz ± 0.01Hz	50.00	136.04						
49.8Hz ± 0.01Hz	49.80	214.95	0.00	214.95	± 1500			
49.0Hz ± 0.01z	49.00	2208.45	2000.00	208.45	± 1500	0.8	0.9	
48.0Hz ± 0.01z	48.00	4761.95	4500.00	261.95	± 1500	1.0	1.3	
47.0Hz ± 0.01z	47.00	7320.81	7000.00	320.81	± 1500	1.0	1.4	
46.0Hz ± 0.01z	46.00	9872.93	9500.00	372.93	± 1500	1.3	1.7	
47.0Hz ± 0.01z	47.00	7318.26	7000.00	318.26	± 1500	1.0	3.0	
48.0Hz ± 0.01z	48.00	4754.94	4500.00	254.94	± 1500	1.0	2.0	
49.0Hz ± 0.01z	49.00	2197.44	2000.00	197.44	± 1500	1.0	1.7	
49.8Hz ± 0.01Hz	49.80	107.35	0.00	107.35	± 1500	9.9	10.5	
50.0Hz ± 0.01Hz	50.00	15003.18						

			0% Pn, f1 :	=49.8Hz; dro	op=5%; no de	lay	
Test 2	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	The response times Tan_90 % <10s	For The settling times T≤30s
50Hz ± 0.01Hz	50.00	135.07					
49.8Hz ± 0.01Hz	49.80	238.33	0.00	238.33	± 1500		
49.0Hz ± 0.01Hz	49.00	4977.50	4800.00	177.50	± 1500	0.9	1.0
48.0Hz ± 0.01Hz	48.00	10992.71	10800.00	192.71	± 1500	1.2	1.7
47.0Hz ± 0.01Hz	47.00	14972.11	15000.00	-27.89	± 1500		
46.0Hz ± 0.01Hz	46.00	15028.01	15000.00	28.01	± 1500		
47.0Hz ± 0.01Hz	47.00	15027.92	15000.00	27.92	± 1500		
48.0Hz ± 0.01Hz	48.00	11068.34	10800.00	268.34	± 1500		
49.0Hz ± 0.01Hz	49.00	4979.08	4800.00	179.08	± 1500	0.9	1.0
49.8Hz ± 0.01Hz	49.80	113.87	0.00	113.87	± 1500	0.9	1.1
50.0Hz ± 0.01Hz	50.00	14992.42					

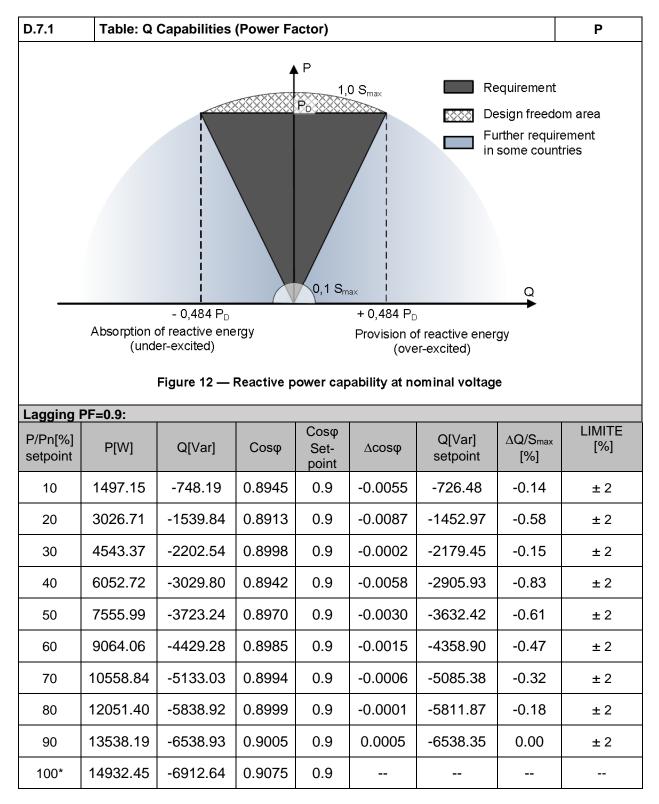

Page 57 of 79

		50% Pn, f1 =46.0Hz; droop=5%; no delay										
Test 3	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	The response times Tan_90 % <10s	For The settling times T≤30s					
50Hz ± 0.01Hz	50.00	7574.42										
49.0Hz ± 0.01Hz	49.00	7575.57	7500.00	75.57	± 1500							
48.0Hz ± 0.01Hz	48.00	7575.30	7500.00	75.30	± 1500							
47.0Hz ± 0.01Hz	47.00	7574.92	7500.00	74.92	± 1500							
46.0Hz ± 0.01Hz	46.00	7574.01	7500.00	74.01	± 1500							
47.0Hz ± 0.01Hz	47.00	7574.54	7500.00	74.54	± 1500							
48.0Hz ± 0.01Hz	48.00	7575.58	7500.00	75.58	± 1500							
49.0Hz ± 0.01Hz	49.00	7575.91	7500.00	75.91	± 1500							
50.0Hz ± 0.01Hz	50.00	7576.37										

			50% P	n, f1 =49.8H	z; droop=5%;		
Test 4	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	The response times Tan_90 % <10s	For The settling times T≤30s
50Hz ± 0.01Hz	50.00	7576.48					
49.8Hz ± 0.01Hz	49.80	7669.19	7500.00	169.19	± 1500		
49.0Hz ± 0.01Hz	49.00	12421.32	12300.00	121.32	± 1500	1.2	1.7
48.0Hz ± 0.01Hz	48.00	15016.91	15000.00	16.91	± 1500	1.2	1.4
47.0Hz ± 0.01Hz	47.00	15022.68	15000.00	22.68	± 1500		
46.0Hz ± 0.01Hz	46.00	15027.35	15000.00	27.35	± 1500		
47.0Hz ± 0.01Hz	47.00	15070.41	15000.00	70.41	± 1500		
48.0Hz ± 0.01Hz	48.00	15071.58	15000.00	71.58	± 1500	0.2	0.3
49.0Hz ± 0.01Hz	49.00	12475.46	12300.00	175.46	± 1500	1.0	12.0
49.8Hz ± 0.01Hz	49.80	7607.10	7500.00	107.10	± 1500		
50.0Hz ± 0.01Hz	50.00	15043.05					

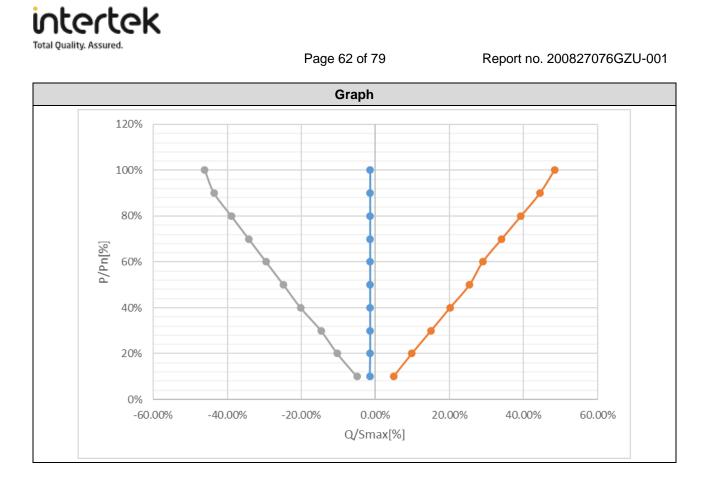


Page 58 of 79



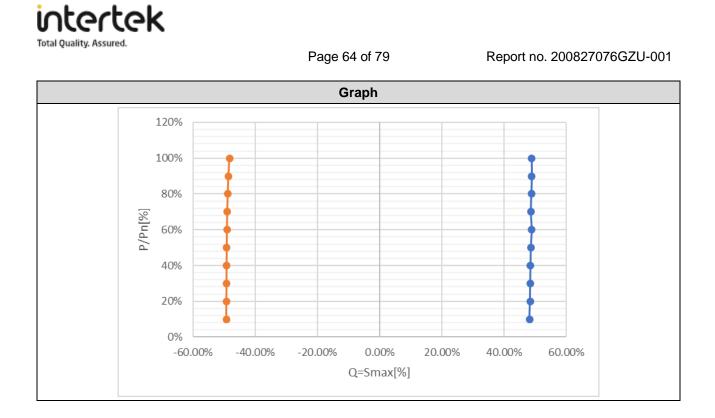
Page 59 of 79

Total Quality. Assured.


Page 60 of 79

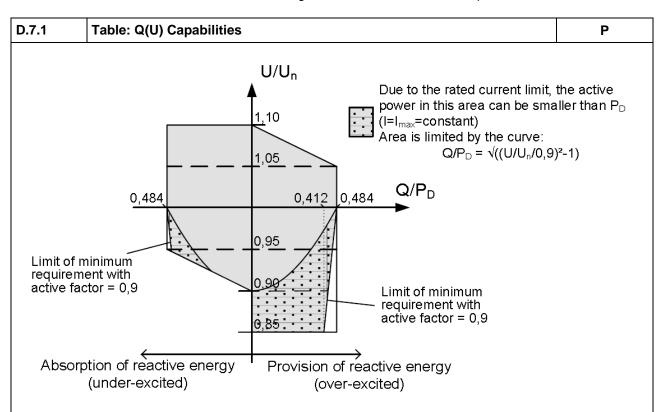
Total Quality. Assured.

Page 61 of 79


Leading I	PF=0.9:							
P/Pn[%] setpoint	P[W]	Q[Var]	Cosφ	Cosφ Set- point	∆cosφ	Q[Var] setpoint	∆Q/S _{max} [%]	LIMITE [%]
10	1512.68	732.88	0.8999	0.9	-0.0001	726.48	0.04	± 2
20	3038.83	1471.25	0.9001	0.9	0.0001	1452.97	0.12	±2
30	4554.85	2249.05	0.8966	0.9	-0.0034	2179.45	0.46	±2
40	6066.83	3020.30	0.8952	0.9	-0.0048	2905.93	0.76	±2
50	7572.32	3807.33	0.8934	0.9	-0.0066	3632.42	1.17	± 2
60	9082.47	4345.01	0.9021	0.9	0.0021	4358.90	-0.09	± 2
70	10579.82	5113.14	0.9004	0.9	0.0004	5085.38	0.19	±2
80	12073.31	5893.27	0.8987	0.9	-0.0013	5811.87	0.54	±2
90	13561.29	6661.82	0.8975	0.9	-0.0025	6538.35	0.82	±2
100	14839.71	7251.01	0.8985	0.9				
Q=0:					-			
P/Pn[%] setpoint	P[W]	Q[Var]	Cosφ	Cosφ Set- point	∆cosφ	Q[Var] setpoint	∆Q/S _{max} [%]	LIMITE [%]
10	1497.18	-226.92	0.9769	1	-0.0231	0.00	-1.51	± 2
20	3035.04	-226.45	0.9950	1	-0.0050	0.00	-1.51	± 2
30	4560.23	-226.49	0.9980	1	-0.0020	0.00	-1.51	± 2
40	6069.81	-226.48	0.9989	1	-0.0011	0.00	-1.51	± 2
50	7584.55	-226.48	0.9993	1	-0.0007	0.00	-1.51	± 2
60	9060.81	-226.52	0.9995	1	-0.0005	0.00	-1.51	± 2
70	10579.48	-226.48	0.9996	1	-0.0004	0.00	-1.51	± 2
80	12099.32	-226.47	0.9997	1	-0.0003	0.00	-1.51	± 2
90	13592.82	-226.50	0.9997	1	-0.0003	0.00	-1.51	± 2
100	15080.89	-226.40	0.9998	1	-0.0002	0.00	-1.51	± 2

Total Quality. Assured.

Page 63 of 79


Q=48.43%Pn	I					
P/Pn[%] setpoint	P[W]	Q[Var]	Cosφ	Q[Var] setpoint	∆Q/S _{max} [%]	LIMITE [%]
10	1427.02	7229.63	0.1936	7264.5	-0.23	± 2
20	2960.58	7254.05	0.3779	7264.5	-0.07	± 2
30	4486.65	7264.67	0.5255	7264.5	0.00	± 2
40	6006.93	7277.24	0.6366	7264.5	0.08	± 2
50	7518.19	7292.24	0.7178	7264.5	0.18	± 2
60	9031.32	7333.09	0.7763	7264.5	0.46	± 2
70	10540.10	7292.31	0.8224	7264.5	0.19	± 2
80	12038.77	7317.19	0.8545	7264.5	0.35	± 2
90	13534.20	7339.45	0.8791	7264.5	0.50	± 2
100*	14794.84	7331.77	0.8960	7264.5	0.45	± 2
Q=-48.43%Pi	า					
P/Pn[%] setpoint	P[W]	Q[Var]	Cosφ	Q[Var] setpoint	∆Q/S _{max} [%]	LIMITE [%]
10	1365.05	-7405.72	0.1813	-7264.5	-0.94	± 2
20	2925.07	-7399.32	0.3676	-7264.5	-0.90	± 2
30	4463.71	-7387.82	0.5171	-7264.5	-0.82	± 2
40	5985.57	-7385.69	0.6296	-7264.5	-0.81	± 2
50	7495.91	-7378.08	0.7127	-7264.5	-0.76	± 2
60	9011.48	-7370.20	0.7741	-7264.5	-0.70	± 2
70	10515.81	-7350.19	0.8196	-7264.5	-0.57	± 2
80	12015.88	-7325.89	0.8538	-7264.5	-0.41	± 2
90	13513.25	-7297.78	0.8799	-7264.5	-0.22	± 2
100	14769.27	-7240.81	0.8979	-7264.5	0.16	± 2

Total Quality. Assured.

Page 65 of 79

Report no. 200827076GZU-001

Figure 13 — Reactive power capability at active power P_D in the voltage range (positive sequence component of the fundamental)

Over-excited						
	AC o	utput		React	ive power mea	sured
Voltage		Measured		Reactive	Value	
setting [V/Vn]	Voltage [V]	[V/Vn]	Active power [W]	power [Var]	[Q/P _n]	Limits
1.10	253.33	1.10	15020.42	-226.51	-0.0151	±0.02
1.08	248.53	1.08	15014.56	2969.87	0.1980	0.194±0.02
1.05	241.89	1.05	14795.67	7311.76	0.4875	
1.00	230.01	1.00	14783.19	7333.04	0.4889	
0.95	218.46	0.95	13885.50	7338.43	0.4892	
0.92	211.90	0.92	13327.75	7341.86	0.4895	
0.90	207.08	0.90	12926.21	7343.97	0.4896	
0.85	195.59	0.85	11949.86	7348.60	0.4899	

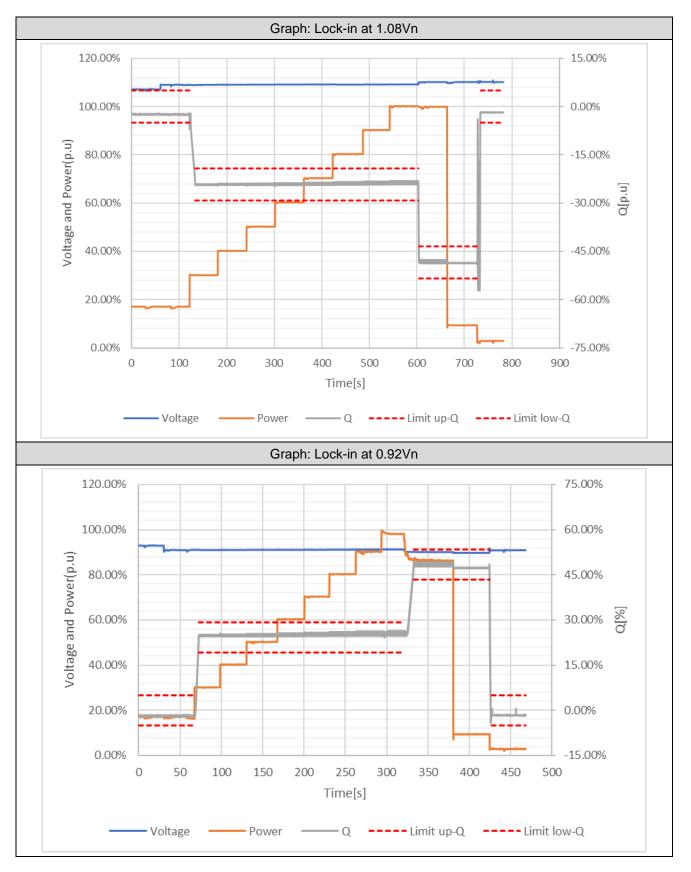
Page 66 of 79

Under-excite	d:							
	AC o	utput		Reactive power measured				
Voltage setting		Measured		Reactive	Value			
[V/Vn]	Voltage [V]	[V/Vn]	Active power [W]	power [Var]	[Q/P _n]	Limits		
1.10	253.14	1.1006	11918.43	-5827.78	-0.4857			
1.08	248.23	1.0793	11923.99	-5816.60	-0.4847			
1.05	241.41	1.0496	11930.47	-5808.39	-0.4840			
1.00	229.89	0.9995	11933.09	-5787.05	-0.4822			
0.95	218.44	0.9497	11700.19	-5772.13	-0.4810			
0.92	211.35	0.9189	11591.18	-2333.34	-0.1944	-0.194±0.02		
0.90	206.74	0.8988	12026.11	-167.38	-0.0139	±0.02		

Total Quality. Assured.

Page 67 of 79

D.7.1	Table: Q Control.	Voltage relat	ed control m	ode		Р
P/Pn [%] Set-point	Vac [V] Set-point	P/Pn [%] measured	Vac [V] Measured	Q [VAr] measured	Q [Var] expected	∆ Q [Var] (≤ ± 5 % Pn)
< 20 %	1,07 Vn	17.01	246.40	-357.29	≈0 (< ± 5 % Pn)	-2.38
< 20 %	1,09 Vn	17.00	250.70	-364.24	≈0 (< ± 5 % Pn)	-2.43
<20 % →30 9	% 1,09 Vn	30.11	250.70	-3638.49	-3663 (within 10sec)	-0.04
40 %	1,09 Vn	40.22	250.84	-3625.23	-3663	0.05
50 %	1,09 Vn	50.26	250.92	-3620.93	-3663	0.08
60 %	1,09 Vn	60.31	251.00	-3615.09	-3663	0.12
70 %	1,09 Vn	70.31	251.07	-3601.72	-3663	0.21
80 %	1,09 Vn	80.30	250.94	-3582.76	-3663	0.33
90 %	1,09 Vn	90.25	251.01	-3565.56	-3663	0.45
100 %	1,09 Vn	100.13	251.11	-3550.07	-3663	0.55
100 %	1,1 Vn	99.84	253.31	-7229.07	-7229.07 -7264.50	
100 % →10 %	% 1,1 Vn	9.36	253.22	-7295.17	-7295.17 -7264.50	
10 % → ≤ 5 %	% 1,1 Vn	2.85	253.38	-272.91	≈0 (< ± 5 % Pn)	-1.82
P/Pn [%] Set-point	Vac [V] Set-point	P/Pn [%] measured	Vac [V] Measured	Q [VAr] measured	Q [Var] expected	∆ Q [Var] (≤ ± 5 % Pn)
< 20 %	0.93 Vn	16.99	213.74	-277.39	≈0 (< ± 5 % Pn)	-1.85
< 20 %	0.91 Vn	16.80	209.13	-274.54	≈0 (< ± 5 % Pn)	-1.83
<20 % → 30 9	% 0.91 Vn	30.16	209.27	3728.45	3663 (within 10sec)	0.64
40 %	0.91 Vn	40.26	209.38	3736.61	3633.00	0.69
50 %	0.91 Vn	50.28	209.49	3749.27	3633.00	0.78
60 %	0.91 Vn	60.34	209.54	3767.64	3633.00	0.90
70 %	6 0.91 Vn 70.34 209.59 3788.69 3633.00		3633.00	1.04		
80 %	% 0.91 Vn 80.31 209.70 3807.43 3633.00		3633.00	1.16		
90 %	0.91 Vn	90.19	209.79	3824.09	3633.00	1.27


Total Quality. Assured.

Page 68 of 79

100 %	0.91 Vn	98.30	209.90	3827.75	3633.00	1.30
100 %	100 % 0.90 Vn		207.24	7275.72	7264.50	0.07
100 % →10 %	0.90 Vn	9.40	206.43	7094.81	7264.50	-1.13
10 % →≤ 5 %	0.91 Vn	2.90	208.98	-241.13	≈0 (< ± 5 % Pn)	-1.61

Page 69 of 79

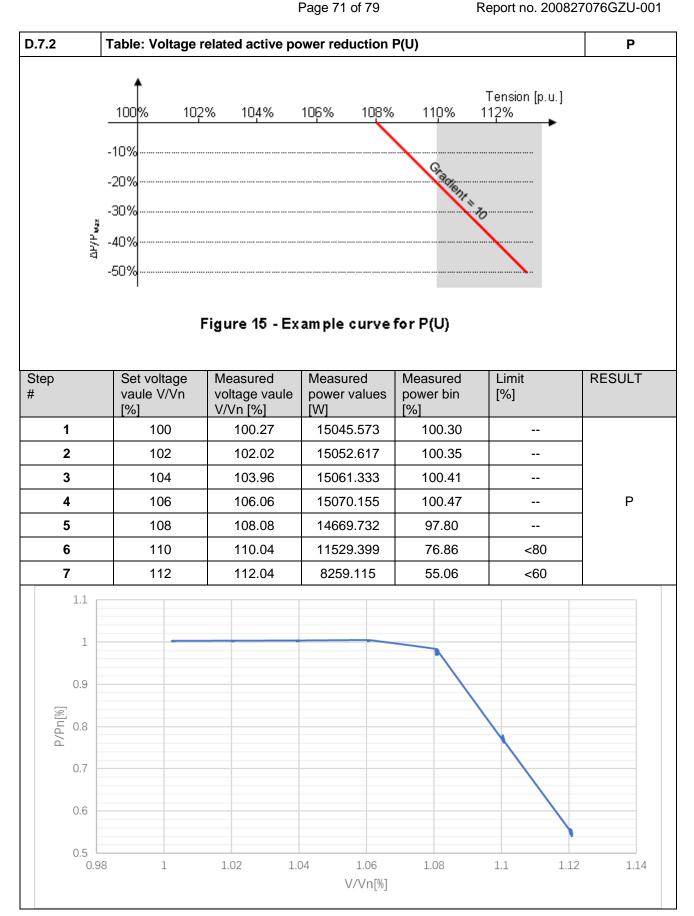
Report no. 200827076GZU-001

intertek

Total Quality. Assured.

Total Quality. Assured.


Page 70 of 79


Report no. 200827076GZU-001

D.7.1	Table: Q C	ontrol Powe	er related co	ontrol mode	S			Р
P Desired (%Sn)	P measured (%Sn)	Q measured (Var)	Voltage Desired (%Un)	Voltage Measured (%Un)	Power Factor desired (cos φ)	Power Factor measured (cos φ)	∆Q (%S _{Max})	Limit (%S _{Max})
20%	20.24%	-226.50	<105%	100.48%	1.0000	0.9950	-1.51	±2
30%	30.35%	-226.51	<105%	100.52%	1.0000	0.9980	-1.51	<u>+</u> 2
40%	40.43%	-226.49	<105%	100.56%	1.0000	0.9989	-1.51	<u>+</u> 2
50%	50.50%	-226.49	<105%	100.61%	1.0000	0.9993	-1.51	<u>+</u> 2
60%	60.55%	-226.50	<105%	100.65%	1.0000	0.9995	-1.51	<u>+</u> 2
60%	60.32%	-1967.00	>105%	105.39%	0.9800	0.9772	-0.93	<u>+</u> 2
70%	70.27%	-3164.36	>105%	105.42%	0.9600	0.9578	-0.68	<u>+</u> 2
80%	80.16%	-4405.50	>105%	105.45%	0.9400	0.9390	-0.33	±2
90%	90.00%	-5758.33	>105%	105.48%	0.9200	0.9198	-0.05	±2
100%	99.54%	-7206.29	>105%	105.52%	0.9000	0.9006	0.39	±2
100%	100.39%	-226.40	<100%	99.18%	1.0000	0.9998	-1.51	±2

Remark: Tested at lock-in voltage 1.05 Vn and lock-out voltage Vn.

The Lock-in value is adjustable between Vn and 1.1Vn in 0.01V steps, the Lock-out value is adjustable between 0.9Vn and Vn in 0.01V steps

intertek Total Quality. Assured.

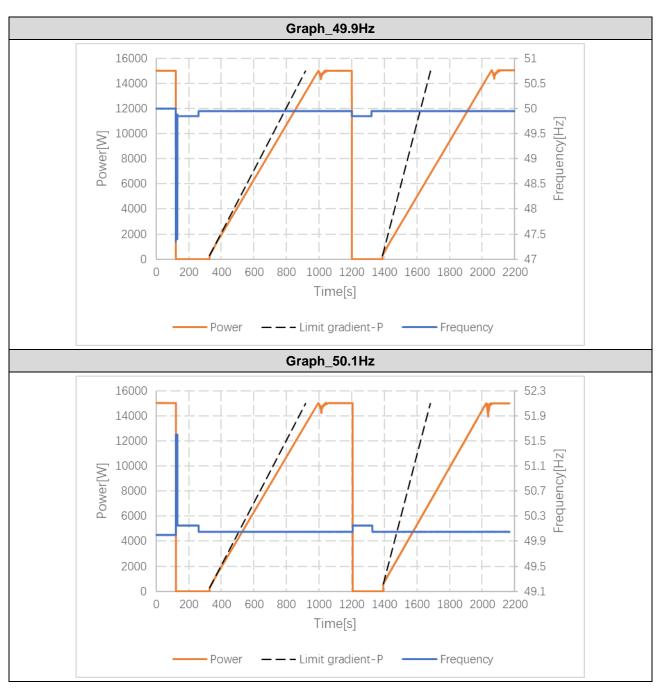
Page 72 of 79

Report no. 200827076GZU-001

	Table: Connection and	reconnection		F	
Param	eter	Reconnection after tripping of the interface protection relay	Normal operation s	tarting	
Lower	frequency	49,9 Hz	49,9 Hz		
Upper frequency		50,1 Hz	50,1 Hz		
1		If connection to the LV distri- bution network: 85% U _n	If connection to the LV distri bution network: 85% U _n		
Lower	voltage	If connection to the HV distri- bution network: 90 % U _o	If connection to the HV distri- bution network: 90 % U₀		
Upper	ustaa	If connection to the LV distri- bution network: 110 % Un	If connection to the L bution network: 110		
opper	voltage	If connection to the HV distri- bution network: 110 % U _o	If connection to the H bution network: 110 9		
Obser	vation time	60 s	60 s		
Maxim gradie	ium active power increase nt	10 %/min*	20 %/min		

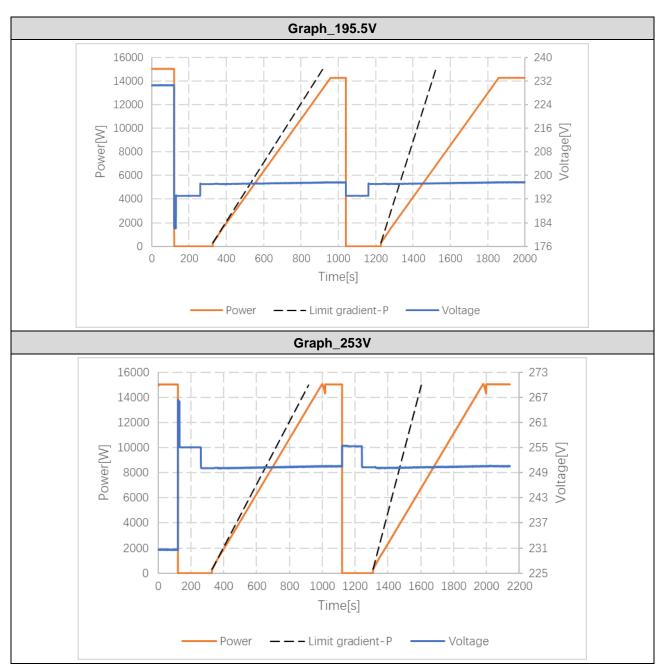
* Power-generating units that have not the ability to apply a certain gradient shall take into account an additional delay.

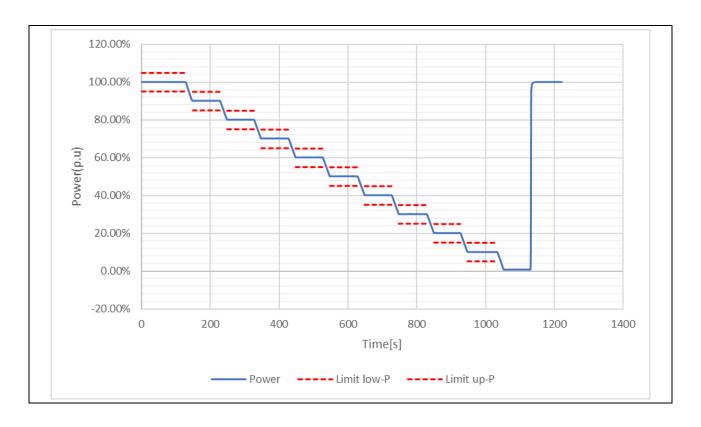
Test sequence after trip	connection	connection allowed	Observation time (s)	Power gradient after connection (%/min)	
Step a)	<49.9Hz	No			
Step b)	≥49.9Hz	Yes	67.2	8.80	
Step c)	>50.1Hz	No			
Step d)	≤50.1Hz	Yes	67.6	9.13	
Step e)	<195.5V	No			
Step f)	≥195.5V	Yes	67.0	8.83	
Step g)	>253V	No			
Step h)	≤253V	Yes	67.4	8.79	
Remark: Maximum a	ctive power increase g	radient 10 %/min.			



Page 73 of 79

Test sequence at normal operation starting	connection	connection allowed	Observation time (s)	Power gradient after connection (%/min)
Step a)	<49.9Hz	No		
Step b)	≥49.9Hz	Yes	67.4	8.80
Step c)	>50.1Hz	No		
Step d)	≤50.1Hz	Yes	67.0	8.82
Step e)	<195.5V	No		
Step f)	≥195.5V	Yes	66.6	8.83
Step g)	>253V	No		
Step h)	≤253V	Yes	67.6	8.79
Remark: Maximum ac	tive power increase g	radient 20 %/min.	-	

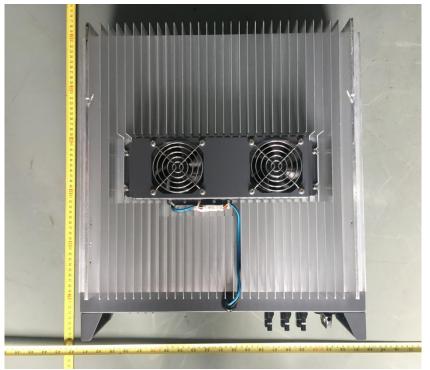




intertek Total Quality. Assured.

Page 76 of 79

D.9		Table: Ceasing interface)	and reduc	tion of ac	ctive power o	on s	et point (Lo	gic		Ρ
String	1	U _{DC} =	600 \	/dc	Uac = Un		230 Vac	PEmax	(KW)	15.0
	1 min mean value P/Pn			Pmea	sured (%)	ΔF	Pmeasured	(%)		Limit
Psetpoint (%)										[%]
		100%		10	00.24		0.24			\pm 5%
		90%		9	0.29		0.29			\pm 5%
		80%		80.28		0.28		±5%		
		70%		70.26		0.26			±5%	
		60%		60.23		0.23			±5%	
		50%		50.20		0.20			±5%	
		40%		40.17		0.17			±5%	
		30%		3	0.13	0.13			±5%	
		20%		2	0.09	0.09			±5%	
10%			10.04		0.04			±5%		
The pow	The power gradient for increasing and red			ucing (%I	P _n /s)				0.	49 %P _n /s
Time for	Logic	c interface (at inp	ut port) acti	vated						1.58 s


Page 77 of 79

Report no. 200827076GZU-001

Annex 1: Photo document

Front view

Rear view

Page 78 of 79

Report no. 200827076GZU-001

Connection view

Internal view

Page 79 of 79

Report no. 200827076GZU-001

Internal view (for model SOFAR 10000TL-G2, SOFAR 12000TL-G2)

Internal view (for model SOFAR 15000TL-G2)

(End of Report)