

TEST REPORT				
C10/11: ed.2.1 SPECIFIC TECHNICAL PRESCRIPTIONS REGARDING POWER-GENERATING				
		DISTRIBUTION NETWORK		
Report Reference No:	200827077GZU-001			
Date of issue	07 Sep 2020			
Total number of pages:	103 pages			
Testing Laboratory				
Address	Room 02, & 101/E201/E301/E4 8/F., No. 7-2. Caipin Road, Scie China	01/E501/E601/E701/E801 of Room 01 1- ence City, GETDD, Guangzhou, Guangdong,		
Testing location/ address	Same as above			
Tested by (name +	Max Gao	Max		
signature):	Engineer	Max Desen Tu		
Approved by (name + signature).	Jason Fu	Darm Tu		
	Technical Team Leader			
Applicant's name	Shenzhen SOFAR SOLAR Co.	., Ltd.		
Address	401, Building 4, AnTongDa Ind Community, XinAn Street, Bao	ustrial Park, District 68, XingDong An District, Shenzhen, China		
Test specification:				
Standard	C10/11: ed.2.1, 01 Sep 2019			
Test procedure	Type approval for type A			
Non-standard test method	N/A			
Test Report Form No.	C10/11_a			
Test Report Form(s) Originator	Intertek Guangzhou			
Master TRF	Dated 2019-10			
	takes no responsibility for and will not a	es as long as Intertek is acknowledged as copyright ssume liability for damages resulting from the reader's		
Test item description	· Solar Grid-tied Inverter			
Trade Mark	SSFAR			
Manufacturer	Same as Applicant			
Model/Type reference	SOFAR 20000TL-G2, SOFAR SOFAR 30000TL-G2, SOFAR			

Page 2 of 103

Ratings	Model	SOFAR 20000TL- G2	SOFAR 25000TL- G2	SOFAR 30000TL- G2	SOFAR 33000TL- G2	
	Max. DC input Voltage		1100Vdc			
	Operating MPPT voltage range		230Vdc -	- 960Vdc		
	PV lsc	30A*2	35A*2	37.5A*2	37.5A*2	
	Max.input current	24A/24A	28A/28A	30A/30A	30A/30A	
	Nominal AC output Power	20000W	25000W	30000W	33000W	
	Max.Output Power	22000VA	27500VA	33000VA	36300VA	
	Nominal output voltage		3/N/PE 230	Vac/400Vac	ac/400Vac	
	Nominal output Frequency	50Hz				
	Power factor range	0.8Leading – 0.8 lagging				
	Safety level		Cla	ss I		
	Ingress Protection		IP	65		
	Operation Ambient Temperature		-25°C -	- +60℃		
	Software version		V2	.20		

Page 3 of 103

resis performed (name of	test and test clause):	Testing location:	
All applicable tests		Intertek Testing Services Branch	Shenzhen Ltd. Guangzhou
	er than special notice, for all clauses, the lel SOFAR 33000TL-G2 is type tested and		01/E601/E701/E801 of . Caipin Road, Science City Jangdong, China
Copy of marking plate			
	SØFAR	Solar Grid-tied Inverter	
	Model No:	SOFAR 33000TL-G2	
	Max.DC Input Voltage		
	Operating MPPT Voltage	Range 230~960V	
		30A/30A	
	Max. PV lsc	37.5A/37.5A	
	Nominal Grid Voltage	3/N/PE,400Vac	
		3x53A	
	Nominal Grid Frequence	y50/60Hz	
		33000W	
	Max.Output Power	36300VA	
	Power Factor	>0.99(adjustable+/-0.8)	
	Ingress Protection	IP65	
	Operating Temperature	Range25°C~+60°C	
	Protective Class	Class I	
	Made in China		
	Manufacturer : Shenzher Address : 401, Building 4, An District 68, XingDong Comm BaoAn District, Shenzhen, C VDE0126-1-1, VDE-AR-N410 IEC62116, UTE C15-712-1, A	unity,XinAn Street, hina 05,G99,IEC61727	
	□i <u>∧</u> C € <u>/</u>	0. 🙆 🔺 🗵	

- Production samples, the additional markings which do not give rise to misunderstanding may be added.
 Label is attached on the side surface of enclosure and visible after installation
- 3. The other model labels are identical with label above, except the model name and rating.

Page 4 of 103

Report no. 200827077GZU-001

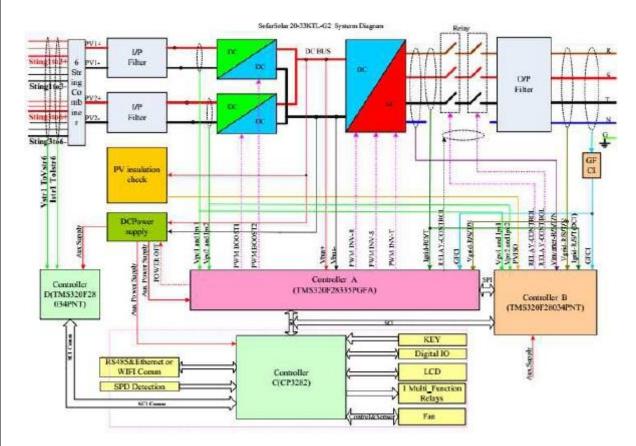
Test item particulars				
Temperature range:	-25°C ~ 60°	°C		
AC Overvoltage category:			🛛 OVC III	
DC Overvoltage category:		🛛 OVC II		
IP protection class	IP65			
Possible test case verdicts:				
- test case does not apply to the test object:	N/A (Not ap	plicable)		
- test object does meet the requirement:	P (Pass)			
- test object does not meet the requirement:	F (Fail)			
Testing:				
Date of receipt of test item:	28 Aug 202	20		
Date (s) of performance of tests:	29 Aug 202	20 – 02 Sep 2	020	
General remarks:				
The test results presented in this report relate only to the This report shall not be reproduced, except in full, with aboratory. "(see Enclosure #)" refers to additional information ap "(see appended table)" refers to a table appended to the	out the writte	n approval of	the Issuing te	sting

When determining for test conclusion, measurement uncertainty of tests has been considered. This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

The test report only allows to be revised only within the report defined retention period unless standard or regulation was withdrawn or invalid.

Throughout this report a point is used as the decimal separator.

This report is based on report No. 190430035GZU-001, dated 02 Dec 2019 and perform additional tests as required by C10/11: ed.2.1, 01 Sep 2019.



Page 5 of 103

General product information:

The Solar converter is a three-phase type.

The unit is providing EMC filtering at the output toward mains. The unit does not provide galvanic separation from input to output (transformerless). The output is switched off redundant by the high power switching bridge and two relays. This assures that the opening of the output circuit will also operate in case of one error.

The internal control is redundant built. It consists of Main DSP(UC20) and slave DSP(UC73).

The Main DSP(UC20) can control the relays, measures voltage, and frequency, AC current with injected DC, insulation resistance and residual current, In addition it tests the array insulation resistance and the RCMU circuit before each start up.

The slave DSP(UC73) is using for detecting residual current, also can open the relays independently and communicate with Main DSP(UC20).

The unit provides two relays in series on Line conductors. When single-fault applied to one relay, alarm an error code in display panel, another redundant relay provides basic insulation maintained between the PV array and the mains. All the relays are tested before starting up. Both controllers (Main DSP(UC20), Slave DSP(UC73) can open the relays

The product was tested on:

Hardware version: V1.00 Software version: V2.20

Model differences:

The models SOFAR 20000TL-G2, SOFAR 25000TL-G2, SOFAR 30000TL-G2 and SOFAR 33000TL-G2 are almost identical in hardware except the shown in the following table and the output power derated by software.

Page 6 of 103

Report no. 200827077GZU-001

The difference in hardware					
ltem	SOFAR 20000TL-G2 SOFAR 25000TL-G2 SOFAR 30000TL-G2				
			SOFAR 33000TL-G2		
Number of PV	2+2	3+3			
terminal					
Number of BUS		550V/110µF	10 capacitors: 550V/110µF		
capacitance	2 capacitors:	1100V/40µF	4 capacitors: 1100V/40µF		
INV inductance	785µH		735µH		
Combiner board	Not the board	Have the board			
External fan	Not the board	2	3		
Relay of output board	6pcs T9V\	/1K15-12S	3pcs AZSR250-2AE-12D		

The tests had been performed on the SOFAR 33000TL-G2 is valid for the SOFAR 20000TL-G2, SOFAR 25000TL-G2, SOFAR 30000TL-G2.

Factory information:

Dongguan SOFAR SOLAR Co., Ltd 1F-6F, Building E, No.1 JinQi Road, Bihu Industrial Park, Wulian Village, Fenggang Town, Dongguan City, China

Page 7 of 103

Report no. 200827077GZU-001

C10/11: ed.2.1, 01 Sep 2019

Clause Requirement - Test

Result - Remark

Verdict

ANNEX D	Technical basic requirements regarding the power-g	enerating units	Ρ
D.1	General	This report is only evaluated and tested for generating unit; The generating plant incorporated with the generating unit shall further consider this clause and sub- clause.	Ρ
	In line with the scope of these technical specifications as well as the CENELEC standards EN 50549-1 and EN 50549-2, these requirements are applicable to all kinds of generation of electrical energy, including energy storage systems.	In line with the scope of EN 50549-1	Ρ
D.2	Order of priorities		Р
	If different requirements on the power-generating unit interfere with each other, the hierarchy listed in EN 50549-1 or EN 50549-2 shall be respected		Ρ
	 In brief, the standard specifies following hierarchy: 1. Generating unit protection, including regarding the prime mover. 2. Interface protection and protection against fault within the power-generating plant; 3. Voltage support during faults and voltage steps; 4. The lower value of: remote control command on active power limitation setpoint from the DSO and local response to overfrequency; 5. Local response to underfrequency if applicable; 6. Reactive power and active power (P(U)) controls; 7. Other control commands on active power set point for e.g. market, economic reasons, self-consumption optimization. 		Ρ
D.3	Integrated automatic separation system		Р
	This clause is applicable to power-generating units with a maximum power ≤ 30 kVA.		Р
	An integrated automatic separation system is strongly recommended in order to facilitate the installation procedure. Indeed, if the power-generating unit is not equipped with such an integrated system, an external device must be used	Incorporating integrated automatic separation system	Ρ
	For the integrated automatic separation system, the requirements of this clause apply.		Ρ
	 Following protection functions are required: Overvoltage 10 min mean Overvoltage Undervoltage Overfrequency Underfrequency A means to detect island situation (LoM) according to EN 62116. 	(See appended table D.3)	Ρ

Γ

Page 8 of 103

Report no. 200827077GZU-001

C10/11: ed.2.1, 01 Sep 2019

	C10/11: e	d.2.1, 01 Sep 20)19	
Clause	Requirement - Test		Result - Remark	Verdict
	All of these protection functions must c relevant requirements in EN 50549-1 (i section 4.9.3			Р
	The integrated automatic separation sy have single fault tolerance according to	Two series relays in each line and may independent operation for each relay.	Р	
	The integrated automatic separation sy set in accordance with the settings as a ANNEXE C			Р
D.4	Operating ranges			Р
	Generating plants shall have the capab in the operating ranges specified below the topology and the settings of the inte protection.	regard-less of		Р
D.4.1	Operating frequency range			Р
	This clause is not applicable to backup as specified in § 2.2.1.		Not backup power system	N/A
	The power-generating unit must comply minimum requirements of the applicabl 50549 or EN 5055-2 on the operating fit (edition 2019, see clause 4.4.2 « Opera range »)	e standard EN requency range	Comply with EN 50549-1	Р
	In brief, the requirements in the standa follows:	rd are as	(See appended table D.4.1)	Р
	Frequency domain Duration 47,5 Hz - 49,0 Hz 30 min 49,0 Hz - 51,0 Hz Perman 51,0 Hz - 51,5 Hz 30 min	nutes nent		
	Additionally, the DSO shall be informed capability of the power-generating unit the frequency range from 51,5 Hz and where appropriate, the maximum durat in this frequency range.	to operate in 52,5 Hz and,		Р
	The URD cannot without good reason r wider frequency ranges or longer minin periods than those specified above, pro technical and economic impact is limite	num operating ovided that the	Comply with above requirements	Р
D.4.2	Maximum admissible power reductio underfrequency			Р
	This clause is not applicable to backup as specified in § 2.2.1.		Not backup power system	N/A
	In general, a power-generating unit mu operate in case of a reduction of the free point of connection. This means that, ir underfrequency, the power-generating reduce the output power as little as poss least being capable of staying above the hereafter.	equency at the unit should ssible and at		P

Total Quality. Assured.

Page 9 of 103

Report no. 200827077GZU-001

C10/11: ed.2.1, 01 Sep 2019				
Clause	Requirement - Test	Result - Remark	Verdict	
	Where the technical capabilities of the power- generating unit are influenced by ambient conditions, these technical capabilities may be demonstrated using the following reference conditions: • Temperature: 0 °C • Altitude: between 400 and 500 m • Humidity: between 15 and 20 g H2O/kg air		P	
D.4.2.1	Limit for non-synchronous power-generating technology (Power Park Modules)	(See appended table D.4.2.1)	Р	
	The power-generating unit must comply with the most stringent requirement of EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.4.3 « Minimal requirement for active power delivery at underfrequency »).	Comply with EN 50549-1	Р	
D.4.2.2	Limits for synchronous power-generating technology	Not synchronous power- generating	N/A	
	In steady state (from t2 onwards), the power- generating unit must comply with the relevant default requirement of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see section 4.4.3 « Minimal requirement for active power delivery at underfrequency »).		N/A	
	Additionally, in the transient time (between t1 and t2), the power-generating unit must comply with the relevant most stringent requirement of EN 50549-1 or EN 50549-2. (In edition 2019 of the standard, the relevant requirements can be found in clause 4.4.3 « Minimal requirement for active power delivery at underfrequency »).		N/A	
D.4.3	Continuous operating voltage range		Р	
	The power-generating unit must comply with the relevant requirement of EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.4.4 « Continuous operating voltage range »).	Comply with EN 50549-1	Р	
	In brief, the requirement in the standard specifies the power-generating plant should be capable to operate continuously when he voltage at the point of connection is within the following range:	(See appended table D.4.3)	Р	
	 For a connection to the low voltage network: 85 % Un < U < 110 % Un where Un = 230 V For a connection to the high voltage network: 90 % 		P	
	Uc < U < 110 % Uc where Uc is the declared voltage. It is also allowed to reduce apparent power in case of		N/A P	
	voltage is below respectively 95 % Un or 95 % Uc.			
D.5	Immunity to disturbances		P	
	Independent of the topology and the settings of the interface protection, a power-generating unit must have the following withstand capabilities.		P	
D.5.1	Rate of change of frequency (RoCoF) immunity		Р	
	This clause does not apply to backup power systems as specified in § 2.2.1.	Not backup power system	N/A	

Total Quality. Assured.

Page 10 of 103

C10/11: ed.2.1, 01 Sep 2019				
Clause	Requirement - Test	Result - Remark	Verdict	
	The power-generating unit must comply with the relevant requirements of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see section 4.5.2 « Rate of change of frequency (RoCoF) immunity ») taking the additional modifications and information specified hereunder into account.	(See appended table D.5.1)	P	
	The power-generating unit shall have the capability to stay connected and operate when the frequen-cy at the point of connection changes with the frequency against time profiles as depicted in the fig-ures hereunder. When considering a sliding measurement window of 500ms, these profiles have a maximum RoCoF of 2 Hz/s.		P	
	For synchronous generating technology, this requirement is more stringent than the default value in the applicable standard EN 50549-1 or EN 50549-2 (2 Hz/s instead of 1 Hz/s) as, in contrast with the standard, no distinction is made between power- generating technologies.	Not synchronous power- generating	N/A	
D.5.2	Under-voltage ride through UVRT		Р	
	This section is not applicable to backup power systems as specified in § 2.2.1.	Not backup power system	N/A	
	For a power-generating unit that is part of a power- generating module with a power ≥ 1 MW (type B in accordance with NC RfG) this paragraph is mandatory.		N/A	
	For a power-generating unit that is part of a power- generating module with a power < 1 MW, this par- agraph is non-mandatory and to be considered as a orienting capability, not as a hard requirement. However, the real withstand capability to voltage dips shall be provided during the homologation process.	Considered as an orienting capability	P	
	The power-generating unit must comply with the relevant requirements of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.5.3 « Under-voltage ride through (UVRT) »), with the following change: • The voltage-time profiles are to be replaced by the profiles hereunder.	(See appended table D.5.2)	P	
	As a consequence, for synchronous generating technology this profile is more stringent than the default requirement in EN 50549-1 or EN 50549-2.	Not synchronous power- generating	N/A	
	For some power-generating technologies, the behaviour of the power-generating unit during and after voltage dips may be impacted by the short circuit power available at the point of connection.		N/A	
	For such technologies different cases can be considered:		N/A	

intertek Total Quality. Assured.

Page 11 of 103

	C10/11: ed.2.1, 01 Sep 20)19	
Clause	Requirement - Test	Result - Remark	Verdict
	• Compliance with this UVRT requirement can be demonstrated considering a ratio of 10 be-tween the available short circuit power at the connection point and the maximum power of the considered power- generating module. In this case, no further checks are needed.		N/A
	• If not, the manufacturer must declare the minimum short-circuit power conditions for which the UVRT-requirement can be complied with. This value shall be considered during the installation process.		N/A
	In line with EN 50549-1 or EN 50549-2 at least 90% of the pre-fault power or 90% of the available power whichever is the smallest, shall be resumed as fast as possible, but at the latest within the following default time after the voltage returned to the continuous operating voltage range (85% Un < U < 110% Un for a connection to a low-voltage distribution network; 90% Uc < U < 110% Uc for a connection to a high-voltage distribution network):		P
	3 seconds for a power-generating unit with synchronous generating technology		N/A
	1 second for a power-generating unit with non- synchronous generating technology		Р
	Another site specific maximum allowed time is to be agreed during the commissioning process. This decision must be taken with the DSO in coordination with the TSO.		N/A
	For a backup power system connected to the high voltage distribution network as specified in §2.2.1, the general requirement is this clause may be relaxed, replacing the voltage-time profile by the figure underneath.	Not backup power system	N/A
D.5.3	Over-voltage ride through (OVRT)		N/A
	Requirement under consideration for a future edition. No requirement in this edition.		N/A
D.6	Active response to frequency deviations		Р
D.6.1	Power response to overfrequency		Р
	This clause is not applicable to backup power system as specified in section §2.2.1	Not backup power system	N/A
	The power-generating unit must comply with the relevant requirements of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see 4.6.1 « Power response to overfrequency ») taking into account the additional modifications and information specified hereunder.	Comply with EN 50549-1	Р
	Instead of the default maximum step response time of 30s specified in the standards EN 50549-1 and EN 50549-2, the following dynamic step response characteristics are required:		P

Total Quality. Assured.

Page 12 of 103

Report no. 200827077GZU-001

C10/11: ed.2.1, 01 Sep 2019 Clause Requirement - Test Result - Remark Verdict • For synchronous power-generating technologies For power-generating units base on a gas turbine or an internal combustion engine with tech-nical specificities not allowing compliance with the prescriptions applied by default as de-scribed above, the following alternative prescription, relating to a minimum power gradient in increasing or decreasing frequency, is applicable: N/A

Γ

Page 13 of 103

Report no. 200827077GZU-001

C10/11: ed.2.1, 01 Sep 2019

	01011.60.2.1, 01.069.2019				
Clau	e Requirement - Test	Result - Remark	Verdict		

	- If Pmax ≤2 MW at minimum 1,11 % Pmax per second		N/A
	- If Pmax >2 MW at minimum 0,33 % Pmax per second		N/A
	For non-synchronous power-generating technology	(See appended table D.6.1)	Р
	The figure hereunder clarifies the terms « Step response time» and « Settling time». In this clause, the 'Value' is the active power and the tolerance is 10%.		Р
	In line with the default requirement of the applicable standard EN 50549-1 :2019 or EN 50549-2: 2019, power-generating units reaching their minimum regulating level shall, in the event of further frequency increase, maintain this power level until a frequency decrease results in a power setpoint which is again above this level.	Comply with EN 50549-1	Ρ
	The optional deactivation threshold fstop is not required. In case fstop is implemented, it shall be deactivated.		Р
	At the time of deactivation of the active power frequency response (= frequency goes down below the threshold frequency f1), the active power can be increased to up to the level of the available power. Nevertheless this shall be done respecting a power limit with a gradient of 10% Pmax/min.		P
	For energy storage systems with a connection to the high-voltage distribution network, the DSU might, for justified technical or security reasons, agree with the DSO on applicable minimum state of charge limits in his connection agreement.		N/A
	The settings must be protected from unpermitted interference (e.g. by a password or seal).		Р
	Automatic disconnection and reconnection as alternative for the droop function are not permitted by default as per the TSO provisions.		Ρ
D.6.2	Power response to underfrequency		Р
	The power-generating unit must comply with the relevant requirements of the applicable EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.6.2 « Power response to underfrequency ») taking additional modifications and information as specified hereunder into account.		Ρ
	This clause is applicable to energy storage systems. For justified technical or security reasons, the DSU might agree with the DSO (in his connection agreement is the power-generating plant is connected to the high-voltage distribution network) on applicable maximum state of charge limits in his connection agreement.		Ρ

Page 14 of 103

Report no. 200827077GZU-001

C10/11: ed.2.1, 01 Sep 2019 Clause Requirement - Test Result - Remark Verdict This clause is optional for all other power-generating N/A units. When, in such units, the capability of activating active power response to underfrequency is activated, the power-generating units must comply with the requirements of this clause. Instead of the default maximum step response time Ρ of 30s in EN 50549-1 and EN 50549-2, the re-guired dynamic step response characteristics (step response time and settling time) are identical to those stipulated above regarding the power response to overfrequency, including the alternative approach for power-generating units based on a gas turbine or an internal combustion engine (see D.6.1). The settings must be protected from unpermitted Ρ interference (e.g. by a password or seal) D.7 Ρ Power response to voltage changes D.7.1 Voltage support by reactive power Ρ A backup power system as referred to in section Not backup power system N/A §2.2.1, must not comply with the requirements of this clause. Instead, for such a system, the power factor must be as close to 1 as possible and may definitely not fall below the limit of 0.85 during in-parallel operation. No control mode at all for the reactive power is imposed by the DSO. The power-generating plant must at least comply with Ρ Comply with EN 50549-1 the corresponding requirements of the applicable standard EN 50549-1 or EN 50549-233 (edition 2019, see clause 4.7.2 « Voltage support by reactive power ») taking the modifications and additional information specified hereunder into account. It is usually the power-generating unit itself that meets this requirement, which is assessed at the time of the homologation. In the other cases, if for example additional equipment such as a capacitor bank is necessary in combination with the power-generating unit, this will be evaluated by the DSO during the procedure for commissioning. For a power-generating plant with a maximum power N/A ≤ 250 kVA connected to the high-voltage distribution network, the DSU may decide to comply to the equivalent requirements of EN 50549-1 rather than those of EN 50549-2. The reactive power capability shall be evaluated at Ρ (See appended table D.7.1) the terminals of the power-generating unit (including, when applicable, the step-up transformer specific to the power-generating unit). The real reactive power capabilities of the power-Ρ generating unit at the terminals should be communicated to the DSO. This can be done during the process of homologation.

intertek Total Quality. Assured.

Page 15 of 103

	C10/11: ed.2.1, 01 Sep 20)19	
Clause	Requirement - Test	Result - Remark	Verdict
	If the capabilities exceed the minimum requirement, and as far as this has only limited technical and economic impact, the DSU is not allowed to refuse without justification the DSO to make use of the reactive power capability (this is not applicable to a small power-generating plant (as defined in chapter 4)).		P
	The settings of the control mode must be protected from unpermitted interference (e.g. by a password or seal).		Р
D.7.1.1	Specific for a small power-generating plant		Р
	By default, the power generation unit must operate according to the following rules:		Р
	• When the voltage \leq 105 % Un: cos phi = 1 (Q=0)		Р
	 When the voltage > 105 % Un: free operation with 1 ≥ cos phi > 0,9under-excited. (no over-excited operation allowed) 		Ρ
D.7.1.2	Specific for another (not small) power-generating plant		Р
	If applicable, the details of the reactive power control mode to be activated in the power-generating unit shall be provided by the DSO during the installation procedure. This setting might be reviewed by the DSO during the lifetime of the power-generating module.		Р
	If the power-generating plant is connected to the high voltage distribution network, it may be necessary to use additional resources such as, for example, a capacitor bank to meet the previous requirements related to the supply of reactive power. If the power- generating unit is disconnected, they must be disconnected as well.	Not connected to the high voltage distribution network	N/A
	For a synchronous power-generating unit that is part of a power-generating module with a maximum power of \ge 1 MW (type B according to NC RfG), the following specific requirement is also applicable:	Not synchronous power- generating unit	N/A
	Alternatively to the Q(U) control mode specified above, a synchronous power-generating unit of type B (power ≥ 1 MW) shall be equipped with a permanent automatic excitation control system that can provide constant alternator terminal voltage at a selectable setpoint without instability over the entire operating range of the synchronous power- generating module. When the setpoint gives rise to a re-active power exchange beyond the capability requirements above, the reactive power exchange may be kept at the limits of the required capability.		N/A

intertek Total Quality. Assured.

Page 16 of 103

Report no. 200827077GZU-001

C10/11: ed 2 1 01 Sep 2010

	C10/11: ed.2.1, 01 Sep 20)19	
Clause	Requirement - Test	Result - Remark	Verdict
	The setpoint must be selectable in the continuous operating voltage range (see section D.4.3) and is given by the DSO.		Р
	The DSO can give the required instructions to make the selection of the setpoint possible remotely by the DSO's control center (see § 7.13), respecting the applicable regional legal framework.		Р
D.7.2	Voltage related active power reduction P(U)	(See appended table D.7.2)	Р
	Voltage relating active power reduction is allowed and even recommended in order to avoid disconnection due to the operation of the overvoltage protection. When implemented, the power-generating unit must comply with the relevant requirements of the applicable standard EN 50549-1 or EN50549-2 (edition 2019, see clause 4.7.3 « Voltage related active power reduction »).	Comply with EN 50549-1	P
D.7.3	Provision of additional fast reactive current during faults and voltage steps		Р
	This Section is only applicable to non-synchronous power-generating units connected to a high volt-age distribution network and are not part of a small power-generating plant.		Р
	For power-generating units that are part of a power- generating module with a maximum power <1 MW, there is no capability requirement. However, if such a generating module has the capability to provide additional fast reactive current during faults and voltage steps, this function must be deactivated by default.		P
	Power-generating units that are part of a power- generating module with a maximum power ≥ 1 MW must comply with the relevant requirements of the standard EN 50549-2 (edition 2019, see clause 4.7.4.2.1 « Voltage support during faults and voltage steps »), taking the additional information specified in this Section into account. By default, this function must be deactivated.		P
	A directly connected asynchronous machine cannot provide voltage support in a controlled manner with regard to short circuit currents as a consequence of faults or when there are sudden voltage variations. The DSO will include these elements in its assessment of the demand for connection.		N/A
D.8	Connection and reconnection		Р

Total Quality. Assured.

Page 17 of 103

Report no. 200827077GZU-001

	C10/11: ed.2.1, 01 Sep 20)19	
Clause	Requirement - Test	Result - Remark	Verdict
	The power-generating unit must comply with the relevant requirements of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.10 « Connection and starting to generate electrical power ») taking the additional information specified hereunder into account.	Comply with EN 50549-1	P
	Connection and reconnection after tripping of the interface protection relay is subject to the conditions listed in the table hereunder. These settings are different than the default settings of EN 50549-1 and EN 50549-2.	(See appended table D.8)	P
	The automatic connection and reconnection is allowed if the abovementioned conditions are met.		Р
	If, at the power-generating unit connected to the HV distribution network, no distinct sets of conditions can be applied, it is not possible to make a distinction between the two connection modes, the conditions must be chosen such as they meet both sets of conditions.	Not connected to the HV distribution network	N/A
D.9	Ceasing and reduction of active power on set point		Р
	This clause is not applicable to the backup power systems specified in §2.2.1.	Not backup power system	N/A
D.9.1	Ceasing active power	(See appended table D.9)	Р
	The power-generating unit must comply with the relevant requirements of the applicable standard EN 5054-1 or EN 50549-2 (edition 2019, see clause 4.11.1 « Ceasing active power ») taking into account the additional information specified hereunder.	Comply with EN 50549-1	Р
	In brief, the requirements in the standards are the following:		Р
	For modules with a power > 800 W, a logic interface to cease the production of active power within 5 seconds after receiving the instruction is required.		Р
	Remote operation is optional		Р
	Respecting the regional regulatory provisions, the DSO can request additional equipment for a remote operation of this logic interface.		Р
	Unless defined otherwise by the DSO, this logic interface is based on a contact rather than using a communicated protocol.		Р
D.9.2	Reduction of active power on set point	(See appended table D.9)	Р
	The requirement of this Section is applicable only to the power-generating units that are part of:		Р
	 a power-generating module with a maximum power of ≥ 1 MW 		N/A

intertek Total Quality. Assured.

Page 18 of 103

Report no. 200827077GZU-001

C10/11: ed.2.1, 01 Sep 2019

Clause R	Requirement - Test	Result - Remark	Verdict

D.10	Communication – Remote monitoring and control		N/A
	Depending of the modalities specified in section D.10 hereafter, the DSO can request additional equipment for a remote operation of this reduction.		N/A
	In brief, the requirements in the standard are the following: For type B modules: The settings of the limit must be possible with a maximum increment of 10%. Reduction of the power generation to the respective limit in a range of maximum 0,66 % Pn/ s and of minimum 0,33 % Pn/ s Deconnection of the network is allowed when below minimum regulating level Remote operation is optional		P
	The power-generating module must comply with the relevant requirements of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.11.2 « Reduction of active power on set point ») taking into account the additional information specified hereunder. Generally, the power-generating unit complies with this requirement, which is assessed when homologated. Otherwise, if, for example, additional equipment such as a capacitor bank is required in combination with the power-generating unit, this will be evaluated by the DSO during the commissioning procedure.	Comply with EN 50549-1	Ρ
	• a power-generating plant with a maximum power of > 250 kVA, if the DSO so requires, in accordance with the regional regulations.		Ρ

Page 19 of 103

Report no. 200827077GZU-001

Appended Table - Testing Result

8.2.3	TABL	E: Flicker							Р
Flicker meas	ureme	nt							
According to I	EN 610	00-3-3/EN	61000-3-1	1					
Model: SOFA	R 3300	00TL-G2							
Value		Ps	t	Plt			dc		d _{max}
Limit		≤ 1		≤ 0.65			≤ 3.30%		4%
Test valu	е	0.1	6	0.14			0.03		0.20
			Test	: SOFAR 330)00TL-(G2		•	
		No. 1 2 3 4 5 6 7 8 9 10 11 12	dc[%] 0.02 0.01 0.03 0.02 0.00 0.01 0.02 0.02 0.03 0.02 0.02	dmax[%] 0.17 0.18 0.19 0.18 0.19 0.12 0.20 0.18 0.20 0.20 0.20 0.20 0.20 0.18	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	ms] .00 .00 .00 .00 .00 .00 .00 .00 .00	Pst 0.13 0.13 0.14 0.13 0.13 0.13 0.13 0.16 0.14 0.16 0.16 0.14 0.14		
							Plt 0.14		

Total Quality. Assured.

Page 20 of 103

Report no. 200827077GZU-001

г

8.2.3	TABLE: Flicker			Р
Flicker meas	urement			
According to E	EN 61000-3-3/EN 61000-3-	-11		
Model: SOFA	R 20000TL-G2			
Value	P _{st}	P _{lt}	d _c	d _{max}
Limit	≤ 1	≤ 0.65	≤ 3.30%	4%
Test value	e 0.11	0.11	0.06	0.11

	Test	: SOFAR 20	000TL-G2		
No.	dc[%]	dmax[%]	d(t)[ms]	Pst	
1	0.06	0.11	0.00	0.11	
2	0.00	0.00	0.00	0.11	
3	0.00	0.00	0.00	0.11	
4	0.00	0.00	0.00	0.11	
5	0.01	0.10	0.00	0.11	
6	0.00	0.00	0.00	0.11	
7	0.00	0.00	0.00	0.11	
8	0.00	0.00	0.00	0.11	
9	0.00	0.00	0.00	0.11	
10	0.00	0.00	0.00	0.11	
11	0.00	0.00	0.00	0.11	
12	0.00	0.00	0.00	0.11	
				Plt	
				0.11	

Total Quality. Assured.

Page 21 of 103

2.4	TABLE:	Current	harmonie	cs emissio	on test			Р
urrent harmo	onics emis	sion test	for class	A limit (A	According	to EN 61	000-3-12)	
odel: SOFAF	R 20000TL	-G2						
% rating pov	ver condi	tion:						
								•
			Norma	al ambient	(EN 61000	0-3-12)		
				Output p	ower 33%	-		
	1	W atts (kW)			:	2,198/2,198/2,19	92
		Vrms(V)				23	0,07/ 230,01/ 230	0,00
		Arms(A)					9,554/9,557/9,5	32
	Fn	equency(I	47)				50,00	
		3% outpu	-			0.6	04%/0,575%/0,6	2079/
			· ·	9/ . F E		0,0	Phase	Harmonic
Harmonics		nt Magnitu	<u> </u>		idamental		Phase	Current
	L1	L2	L3	L1	L2	L3		Limits (%)
1st	9,554	9,556	9,532				Three Phase	
2nd	0,008	0,009	0,007	0,080	0,094	0,079	Three Phase	8,000
3rd	0,027	0,009	0,014	0,281	0,094	0,148	Three Phase	21,600
4th	0,008	0,01	0,009	0,087	0,102	0,090	Three Phase	4,000
5th Sth	0,015	0,027	0,018	0,158	0,281	0,186	Three Phase	10,700
6th 7th	0,01	0,008 0,011	0,01 0,015	0,101 0,121	0,080 0,118	0,101	Three Phase	2,667 7,200
8th	0,012	0,011	0,015	0,079	0,118 0,068	0,157 0,076	Three Phase Three Phase	2,000
9th	0,000	0,000	0,007	0,073	0,000	0,070	Three Phase	3,800
10th	0,004	0,005	0,004	0,042	0,050	0,043	Three Phase	1,600
1 1th	0,007	0,014	0,012	0,072	0,143	0,128	Three Phase	3,100
12th	0,004	0,004	0,005	0,042	0,045	0,051	Three Phase	1,333
13th	0,008	0,01	0,017	0,088	0,107	0,183	Three Phase	2,000
14th	0,003	0,003	0,004	0,035	0,030	0,040	Three Phase	8,000
15th	0,009	0,006	0,012	0,096	0,067	0,130	Three Phase	N/A
<u>16th</u> 17th	0,003	0,003 0,013	0,003 0,019	0,030 0,131	0,030 0,132	0,030 0,198	Three Phase Three Phase	N/A N/A
18th	0,003	0,013	0,013	0,031	0,132	0,036	Three Phase	N/A N/A
19th	0,000	0,000	0,000	0,000	0,004	0,000	Three Phase	N/A
20th	0,003	0,003	0,002	0,027	0,028	0,026	Three Phase	N/A
21th	0,006	0,004	0,007	0,063	0,045	0,078	Three Phase	N/A
22th	0,002	0,003	0,002	0,025	0,027	0,025	Three Phase	N/A
23th	0,016	0,017	0,018	0,171	0,174	0,193	Three Phase	N/A
24th	0,003	0,003	0,003	0,033	0,028	0,035	Three Phase	N/A
25th	0,013	0,013	0,015	0,140	0,138	0,158	Three Phase	N/A
<u>26th</u> 27th	0,003	0,003 0,003	0,003	0,027 0,030	0,031 0,032	0,028	Three Phase	N/A N/A
27th 28th	0,003	0,003	0,004 0,002	0,030	0,032	0,044 0,026	Three Phase Three Phase	N/A N/A
29th	0,003	0,002	0,002	0,027	0,025	0,020	Three Phase	N/A N/A
30th	0,003	0,003	0,003	0,027	0,028	0,028	Three Phase	N/A
31th	0,01	0,01	0,008	0,110	0,101	0,087	Three Phase	N/A
32th	0,002	0,002	0,002	0,024	0,025	0,026	Three Phase	N/A
33th	0,004	0,003	0,006	0,038	0,035	0,066	Three Phase	N/A
34th	0,002	0,002	0,002	0,024	0,025	0,025	Three Phase	N/A
35th	0,01	0,009	0,006	0,108	0,098	0,065	Three Phase	N/A
36th	0,003	0,003	0,003	0,029	0,031	0,030	Three Phase	N/A
37th 38th	0,006	0,009 0,002	0,006 0,002	0,065 0,023	0,089 0,024	0,061 0,024	Three Phase Three Phase	N/A N/A
39th	0,002	0,002	0,002	0,023	0,024	0,024 0,042	Three Phase	N/A N/A
40th	0,002	0,000	0,002	0,023	0,030	0,042	Three Phase	N/A

Page 22 of 103

Report no. 200827077GZU-001

66% rating power condition:

			Norma		(EN 61000	-3-12)				
	1	N atts (kW)	1	Output p	ower oo %		4,424/4,412/4,4	00		
		Vrm s(V)				0,09/ 230,04/ 23				
						· ·	•			
		Arms(A)				19	,229/ 19,180/ 19,	,129		
Frequency(Hz) 50,00										
	THD* (66	5% output	:power)			0,4	59%/0,518%/0,4	68%		
larmonics	Curren	it Magnitu	de (A)	% of Fun	damental		Phase	Harm onic		
	L1	L2	L3	L1	L2	L3		Current Limits (%)		
1st	19,229	19,180	19,129				Three Phase			
2nd	0,008	0,012	0,010	0,042	0,061	0,052	Three Phase	8,000		
3rd	0,013	0,043	0,038	0,069	0,226	0,199	Three Phase	21,600		
4th	0,010	0,011	0,011	0,052	0,058	0,056	Three Phase	4,000		
5th	0,052	0,040	0,018	0,272	0,208	0,097	Three Phase	10,700		
6th	0,011	0,009	0,012	0,057	0,047	0,061	Three Phase	2,667		
7th	0,028	0,040	0,024	0,144	0,211	0,124	Three Phase	7,200		
8th	0,009	0,008	0,008	0,046	0,042	0,041	Three Phase	2,000		
9th	0,019	0,023	0,014	0,100	0,122	0,072	Three Phase	3,800		
10th	0,005	0,007	0,006	0,026	0,035	0,029	Three Phase	1,600		
11th	0,022	0,038	0,035	0,115	0,200	0,184	Three Phase	3,100		
12th	0,006	0,004	0,007	0,031	0,023	0,039	Three Phase	1,333		
13th	0,035	0,021	0,020	0,181	0,107	0,104	Three Phase	2,000		
14th	0,005	0,004	0,005	0,027	0,019	0,024	Three Phase	8,000		
15th	0,005	0,023	0,021	0,026	0,120	0,109	Three Phase	N/A		
16th	0,004	0,005	0,004	0,021	0,025	0,018	Three Phase	N/A		
17th	0,011	0,018	0,026	0,055	0,092	0,135	Three Phase	N/A		
18th	0,004	0,003	0,004	0,020	0,017	0,019	Three Phase	N/A		
19th	0,025	0,006	0,024	0,130	0,030	0,123	Three Phase	N/A		
20th	0,003	0,003	0,003	0,016	0,016	0,016	Three Phase	N/A		
21th	0,010	0,010	0,018	0,054	0,053	0,096	Three Phase	N/A		
22th	0,003	0,003	0,003	0,015	0,015	0,015	Three Phase	N/A		
23th	0,006	0,017	0,016	0,030	0,088	0,085	Three Phase	N/A		
24th	0,003	0,003	0,003	0,017	0,014	0,016	Three Phase	N/A		
25th	0,015	0,005	0,015	0,080	0,024	0,077	Three Phase	N/A		
26th	0,003	0,003	0,003	0,015	0,016	0,015	Three Phase	N/A		
27th	0,005	0,009	0,012	0,027	0,048	0,063	Three Phase	N/A		
28th	0,003	0,003	0,003	0,013	0,013	0,014	Three Phase	N/A		
29th	0,004	0,012	0,013	0,022	0,061	0,067	Three Phase	N/A		
30th	0,003	0,002	0,003	0,013	0,013	0,013	Three Phase	N/A		
31th	0,012	0,004	0,009	0,060	0,019	0,049	Three Phase	N/A		
32th	0,002	0,002	0,003	0,013	0,012	0,014	Three Phase	N/A		
33th	0,005	0,008	0,011	0,025	0,040	0,057	Three Phase	N/A		
34th	0,003	0,003	0,003	0,014	0,014	0,014	Three Phase	N/A		
35th	0,004	0,008	0,009	0,020	0,044	0,045	Three Phase	N/A		
36th	0,003	0,003	0,003	0,014	0,015	0,014	Three Phase	N/A		
37th	0,010	0,004	0,010	0,052	0,021	0,051	Three Phase	N/A		
38th	0,002	0,002	0,002	0,013	0,013	0,013	Three Phase	N/A		
39th	0,004	0,006	0,007	0,019	0,033	0,034	Three Phase	N/A		
40th	0,002	0,002	0,002	0,012	0,012	0,012	Three Phase	N/A		

Page 23 of 103

Report no. 200827077GZU-001

100% rating power condition:

					(EN 61000	-3-12)		
		Watts	L	output pov	wer 100 %		6,735/6,713/6,70)
		Vrms					0,12/ 230,06/ 230	
		Arms				29	,27 1/ 29,181/ 29,1	21
	F	requency					50,00	
		THD				0,44	47%/0,462%/0,59	7%
Harmonics	Curren	nt Magnitu	ıde (A)	% of Fu	n dam ental		Phase	Harm onic
	L1	L2	L3	L1	L2	L3		Current Limits (%)
1st	29,271	29,181	29,126				Three Phase	
2nd	0,014	0,015	0,012	0,048	0,053	0,041	Three Phase	8,000
3rd	0,021	0,049	0,062	0,073	0,169	0,212	Three Phase	21,600
4th	0,009	0,013	0,013	0,032	0,044	0,045	Three Phase	4,000
5th	0,069	0,027	0,056	0,235	0,093	0,191	Three Phase	10,700
6th	0,012	0,010	0,011	0,040	0,035	0,038	Three Phase	2,667
7th	0,044	0,074	0,062	0,151	0,253	0,213	Three Phase	7,200
8th	0,008	0,010	0,009	0,026	0,034	0,032	Three Phase	2,000
9th	0,045	0,025	0,026	0,155	0,085	0,090	Three Phase	3,800
10th	0,005	0,005	0,007	0,017	0,019	0,023	Three Phase	1,600
11th	0,024	0,061	0,074	0,083	0,210	0,255	Three Phase	3,100
12th	0,006	0,004	0,006	0,022	0,014	0,020	Three Phase	1,333
13th	0,054	0,023	0,051	0,184	0,079	0,174	Three Phase	2,000
14th	0,005	0,005	0,007	0,018	0,018	0,024	Three Phase	8,000
15th	0,011	0,024	0,035	0,039	0,082	0,120	Three Phase	N/A
16th	0,004	0,006	0,004	0,015	0,021	0,014	Three Phase	N/A
17th	0,026	0,029	0,049	0,089	0,099	0,169	Three Phase	N/A
18th	0,005	0,005	0,003	0,016	0,017	0,011	Three Phase	N/A
19th	0,033	0,020	0,043	0,113	0,068	0,147	Three Phase	N/A
20th	0,003	0,005	0,004	0,011	0,016	0,014	Three Phase	N/A
21th	0,014	0,008	0,022	0,048	0,028	0,077	Three Phase	N/A
22th	0,004	0,004	0,003	0,013	0,015	0,011	Three Phase	N/A
23th	0,009	0,027	0,029	0,031	0,093	0,101	Three Phase	N/A
24th	0,003	0,003	0,004	0,011	0,011	0,012	Three Phase	N/A
25th	0,022	0,012	0,027	0,077	0,041	0,094	Three Phase	N/A
26th	0,004	0,004	0,003	0,012	0,014	0,010	Three Phase	N/A
27th	0,008	0,009	0,018	0,026	0,031	0,061	Three Phase	N/A
28th	0,003	0,003	0,003	0,011	0,012	0,009	Three Phase	N/A
29th	0,012	0,020	0,023	0,039	0,067	0,079	Three Phase	N/A
30th	0,003	0,003	0,003	0,009	0,012	0,009	Three Phase	N/A
31th	0,021	0,011	0,023	0,072	0,038	0,078	Three Phase	N/A
32th	0,003	0,003	0,003	0,009	0,011	0,009	Three Phase	N/A
33th	0,006	0,006	0,012	0,022	0,021	0,042	Three Phase	N/A
34th	0,004	0,004	0,004	0,012	0,013	0,012	Three Phase	N/A
35th	0,010	0,018	0,019	0,034	0,061	0,065	Three Phase	N/A
36th	0,003	0,003	0,003	0,010	0,011	0,009	Three Phase	N/A
37th	0,016	0,009	0,018	0,053	0,032	0,061	Three Phase	N/A
38th	0,002	0,003	0,002	0,009	0,009	0,009	Three Phase	N/A
39th	0,004	0,007	0,010	0,015	0,023	0,035	Three Phase	N/A
40th	0,002	0,002	0,002	0,009	0,008	0,008	Three Phase	N/A

Page 24 of 103

4 1	TABLE: C	Current h	armonic	s emissi	on te	st			Р
ent harmoni	cs emissi	ion test f	for class	A limit (A	Acco	rding	g to EN 6	1000-3-12)	
lel: SOFAR 3	3000TL-0	G2							
rating powe									
		511.							
			Norma	al ambient			0-3-12)		
			<u>،</u>	Output p	ower	33%		2 570/2 557/2	EEC
		Watts(kW)					3,579/3,557/3,5 00,40/000,55/	
		Vrms(V)						30,19/229,55/2	
		Arms(A)					1	5,552/15,495/1	5,461
		equency(l	-					50,00	
	•	3% outpu		I				08%/0,892%/0	-
Harmonics		nt Magnitu		% of Fur	-			Phase	Harmonic
	L1	L2	L3	L1	L	2	L3		Current Limits (%)
1 st	15,552	15,495	15,461	99,996	99.	996	99,997	Three Phas	
2nd	0,029	0,015	0,027	0,186	0,0)99	0,173	Three Phas	se 8,000
3rd	0,037	0,046	0,063	0,235		297	0,408	Three Phas	
4th	0,030	0,011	0,026	0,193	0,0		0,170	Three Phas	
5th 6th	0,071 0,026	0,059 0,010	0,025 0,022	0,456 0,167		379 164	0,164	Three Phas Three Phas	
7th	0,026	0,010	0,022	0,167)64 113	0,145 0,221	Three Phase Three Phase	
8th	0,000	0,004	0,034	0,333)64	0,221	Three Phas	
9th	0,025	0,033	0,021	0,162		216	0,137	Three Phas	
10th	0,011	0,011	0,010	0,068	0,0)69	0,063	Three Phas	se 1,600
11th	0,027	0,051	0,030	0,175	0,3		0,192	Three Phas	
12th	0,009	0,007	0,007	0,058)46	0,047	Three Phas	
13th 14th	0,038 0,009	0,028 0,008	0,013 0,008	0,246 0,057		184 150	0,083 0,055	Three Phas Three Phas	
14th	0,009	0,008	0,008	0,057		150 170	0,055	Three Phas	
16th	0,009	0,020	0,024	0,057)48	0,046	Three Phas	
17th	0,008	0,016	0,018	0,050	0,1	03	0,114	Three Phas	se N/A
18th	0,007	0,007	0,006	0,048)43	0,041	Three Phas	
19th	0,015	0,008	0,014	0,096)50	0,094	Three Phas	
20th 21th	0,008 0,010	0,007 0,010	0,006 0,021	0,050 0,067)44)62	0,042 0,135	Three Phas Three Phas	
21th 22th	0,010	0,010	0,021	0,067)63)42	0,039	Three Phase Three Phase	
22th	0,007	0,000	0,000	0,047)42)69	0,039	Three Phas	
24th	0,007	0,007	0,006	0,048)43	0,041	Three Phas	
25th	0,010	0,008	0,011	0,063	0,0)50	0,068	Three Phas	se N/A
26th	0,007	0,007	0,007	0,048)43	0,043	Three Phas	
27th	0,008	0,012	0,010	0,050)78	0,065	Three Phas	
28th 29th	0,007 0,010	0,006 0,007	0,006	0,047)42)45	0,039 0,058	Three Phas Three Phas	
30th	0,010	0,007	0,009	0,000)40)42	0,038	Three Phas	
31th	0,008	0,009	0,009	0,050)59	0,061	Three Phas	
32th	0,007	0,006	0,006	0,047	0,0)42	0,041	Three Phas	se N/A
33th	0,007	0,007	0,010	0,046)48	0,066	Three Phas	
34th	0,007	0,007	0,006	0,048	<u> </u>)42	0,039	Three Phas	
35th	0,010	0,007	0,008	0,064)48)44	0,052	Three Phas	
36th 37th	0,008 0,010	0,007 0,009	0,006	0,048)44)55	0,040 0,076	Three Phas Three Phas	
38th	0,010	0,009	0,012	0,003	<u> </u>)44	0,070	Three Phas	
39th	0,007	0,009	0,007	0,046)57	0,048	Three Phas	
40th	0,007	0,006	0,006	0,047	0,0		0,038	Three Phas	

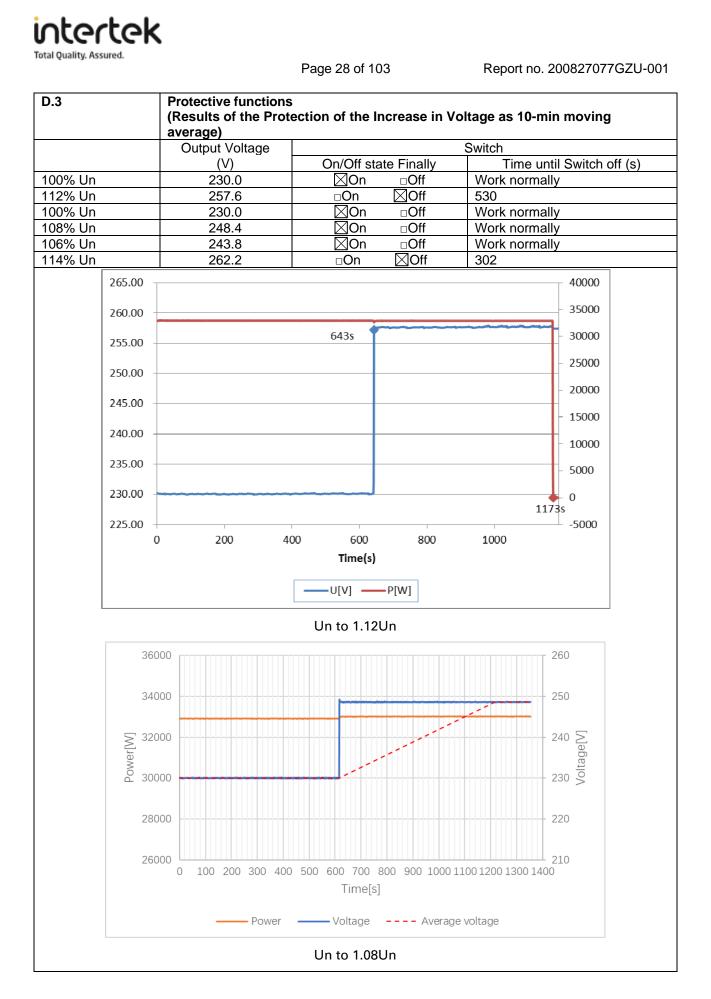
Page 25 of 103

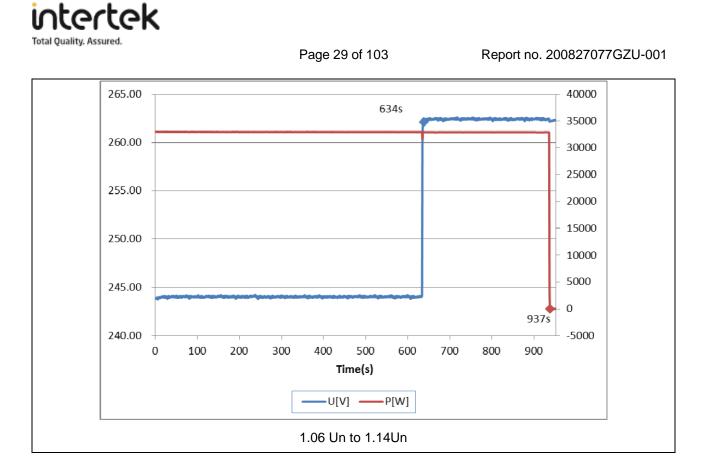
66% rating power condition:

			Norma	l ambient		0-3-12)		
		N - ++ - (1/10)		Output po	ower 66%		249, 212, 242, 7	
		Watts(kW)	1					~
		Vrms(V)					30,31/229,72/230,2	
		Arms(A)				3′	1,652/31,528/31,49	5
	Fre	equency(H	lz)				50,00	
	THD* (66	5% output	t power)			0.6	22%/0,592%/0,764	%
larmonics		nt Magnitu	. ,	% of Fun	d am ent al		Phase	Harmonic
	L1	L2	L3	L1	L2	L3		Current
1st	31,652	31,528	31,494	99,998	99,998	99,997	Three Phase	Limits (%)
2nd	0,036	0,029	0,031	0,114	0,092	0,098	Three Phase	8,000
3rd	0,053	0,023	0,031	0,167	0,032	0,0307	Three Phase	21,600
4th	0,037	0,015	0,032	0,115	0,048	0,001	Three Phase	4,000
5th	0,093	0,055	0,002	0,294	0,040	0,311	Three Phase	10,700
6th	0,035	0,000	0,000	0,078	0,036	0,077	Three Phase	2,667
7th	0,020	0,011	0,093	0,259	0,351	0,297	Three Phase	7,200
8th	0,018	0.014	0,016	0,057	0,043	0,050	Three Phase	2,000
9th	0,059	0,035	0,010	0,187	0,040	0,000	Three Phase	3,800
10th	0,011	0,012	0,010	0,036	0,039	0,031	Three Phase	1,600
11th	0,029	0,079	0,092	0,090	0,252	0,293	Three Phase	3,100
12th	0,011	0,009	0,007	0,035	0,027	0,022	Three Phase	1,333
13th	0,061	0,023	0,060	0,191	0,074	0,190	Three Phase	2,000
14th	0,007	0,010	0,010	0,024	0,031	0,032	Three Phase	8,000
15th	0,024	0,017	0,039	0,076	0,055	0,125	Three Phase	N/A
16th	0,009	0,009	0,007	0,030	0,029	0,023	Three Phase	N/A
17th	0,026	0,038	0,051	0,083	0,121	0,161	Three Phase	N/A
18th	0,008	0,007	0,006	0,024	0,024	0,020	Three Phase	N/A
19th	0,033	0,028	0,045	0,104	0,087	0,144	Three Phase	N/A
20th	0,008	0,008	0,006	0,025	0,026	0,020	Three Phase	N/A
21th	0,020	0,008	0,025	0,063	0,025	0,080	Three Phase	N/A
22th	0,008	0,007	0,006	0,024	0,024	0,019	Three Phase	N/A
23th	0,014	0,033	0,033	0,045	0,104	0,105	Three Phase	N/A
24th	0,007	0,007	0,006	0,023	0,022	0,018	Three Phase	N/A
25th	0,023	0,014	0,030	0,074	0,046	0,096	Three Phase	N/A
26th	0,007	0,007	0,006	0,023	0,023	0,019	Three Phase	N/A
27th	0,013	0,010	0,019	0,040	0,030	0,060	Three Phase	N/A
28th	0,007	0,007	0,005	0,023	0,021	0,017	Three Phase	N/A
29th	0,011	0,020	0,023	0,035	0,063	0,073	Three Phase	N/A
30th	0,007	0,006	0,005	0,021	0,019	0,017	Three Phase	N/A
31th	0,021	0,013	0,024	0,066	0,041	0,077	Three Phase	N/A
32th	0,007	0,006	0,006	0,023	0,021	0,018	Three Phase	N/A
33th	0,010	0,008	0,014	0,030	0,026	0,045	Three Phase	N/A
34th	0,007	0,006	0,005	0,022	0,020	0,017	Three Phase	N/A
35th	0,011	0,020	0,019	0,035	0,065	0,061	Three Phase	N/A
36th	0,007	0,007	0,006	0,023	0,022	0,019	Three Phase	N/A
37th	0,014	0,009	0,017	0,045	0,030	0,052	Three Phase	N/A
38th	0,007	0,007	0,006	0,022	0,021	0,018	Three Phase	N/A
39th	0,008	0,008	0,010	0,025	0,027	0,031	Three Phase	N/A
40th	0,007	0,006	0,005	0,022	0,020	0,017	Three Phase	N/A

Page 26 of 103

Report no. 200827077GZU-001


100% rating power condition:


			Normal	ambient	EN 6400	0-3-12)					
				amplent (Output pov							
	h	Vatts(kW)		acput po			1,043/10,972/10,98	0			
Vrm s(V) 230,31/229,69/230,10											
		Arms(A)				47	7,951/47,773/47,72	4			
	Fre	quency(H	z)			50,00					
	THD* (10	0% output	: power)			0,6	33%/0,624%/0,567	%			
Harmonics	Currer	nt Magnitu	de (A)	% of Fu	ndam ent:	al	Phase	Harmonic			
	L1	L2	L3	L1	L2	L3		Current Limits (%)			
1st	47,950	47,772	47,724	99,998	99,998	99,998	Three Phase				
2nd	0,124	0,087	0,076	0,258	0,181	0,158	Three Phase	8,000			
3rd	0,057	0,054	0,094	0,120	0,113	0,197	Three Phase	21,600			
4th	0,066	0,047	0,037	0,138	0,099	0,077	Three Phase	4,000			
5th	0,060	0,075	0,066	0,124	0,157	0,139	Three Phase	10,700			
6th	0,043	0,013	0,035	0,090	0,028	0,073	Three Phase	2,667			
7th	0,178	0,198	0,114	0,371	0,415	0,240	Three Phase	7,200			
8th	0,052	0,017	0,042	0,108	0,036	0,088	Three Phase	2,000			
9th	0,095	0,077	0,018	0,198	0,161	0,038	Three Phase	3,800			
10th	0,027	0,011	0,023	0,056	0,024	0,047	Three Phase	1,600			
11th	0,058	0,112	0,126	0,121	0,235	0,264	Three Phase	3,100			
12th	0,019	0,010	0,012	0,039	0,021	0,025	Three Phase	1,333			
13th	0,070	0,032	0,069	0,147	0,067	0,145	Three Phase	2,000			
14th	0,014	0,013	0,007	0,030	0,027	0,014	Three Phase	8,000			
15th	0,024	0,025	0,026	0,051	0,052	0,055	Three Phase	N/A			
16th	0,017	0,012	0,008	0,035	0,025	0,016	Three Phase	N/A			
17th	0,022	0,038	0,046	0,046	0,080	0,097	Three Phase	N/A			
18th	0,014	0,011	0,006	0,029	0,023	0,012	Three Phase	N/A			
19th	0,039	0,038	0,056	0,081	0,079	0,118	Three Phase	N/A			
20th	0,009	0,007	0,007	0,018	0,015	0,014	Three Phase	N/A			
21th	0,028	0,009	0,018	0,057	0,019	0,038	Three Phase	N/A			
22th	0,007	0,006	0,007	0,015	0,012	0,014	Three Phase	N/A			
23th	0,024	0,039	0,034	0,049	0,082	0,072	Three Phase	N/A			
24th	0,007	0,006	0,005	0,014	0,012	0,011	Three Phase	N/A			
25th	0,023	0,018	0,029	0,047	0,037	0,061	Three Phase	N/A			
26th	0,006	0,006	0,005	0,014	0,012	0,011	Three Phase	N/A			
27th	0,014	0,006	0,017	0,029	0,013	0,036	Three Phase	N/A			
28th	0,007	0,006	0,005	0,014	0,013	0,011	Three Phase	N/A			
29th	0,014	0,023	0,023	0,029	0,049	0,048	Three Phase	N/A			
30th	0,006	0,006	0,005	0,013	0,012	0,011	Three Phase	N/A			
31th	0,024	0,020	0,028	0,049	0,042	0,058	Three Phase	N/A			
32th	0,006	0,006	0,005	0,013	0,012	0,010	Three Phase	N/A			
33th	0,010	0,006	0,010	0,021	0,013	0,020	Three Phase	N/A			
34th	0,006	0,006	0,005	0,013	0,012	0,010	Three Phase	N/A			
35th	0,018	0,027	0,025	0,038	0,056	0,051	Three Phase	N/A			
36th	0,006	0,006	0,005	0,013	0,012	0,010	Three Phase	N/A			
37th	0,016	0,012	0,017	0,034	0,026	0,036	Three Phase	N/A			
38th	0,006	0,005	0,005	0,013	0,011	0,010	Three Phase	N/A			
39th 40th	0,007 0,006	0,006 0,005	0,008 0,005	0,015 0,013	0,012 0,011	0,016 0,010	Three Phase Three Phase	N/A N/A			

Total Quality. Assured.

Page 27 of 103

D.3	Table: Overv	oltage thresh	nold stage		Р
Parameter	Settings	Test 1	Test 2	Test 3	Limits
Trip value L1 [V]	264.5	263.51	263.59	263.73	264.5±2.3
Trip time [ms]	100	160	164	154	<200
Trip value L2[V]	264.5	263.44	264.30	264.36	264.5±2.3
Trip time [ms]	100	166	170	176	<200
Trip value L3[V]	264.5	264.38	263.44	263.86	264.5±2.3
Trip time [ms]	100	162	158	172	<200
Trip value L1L2L3 [V]	264.5	263.65	263.82	263.42	264.5±2.3
Trip time [ms]	100	166	172	180	<200
	KEYSIGHT 1 500W 2		D-X 3014T, MY592 500V/ 4 50.04		19051434: Mon Aug 31 10:28:16 2020 .122s Roll Cursor Manual X1(1): -1.168000000000s X2(1): -968.000000000ms Δx: 180.000000000ms 1/Δx: 5.5556Hz
	s Menu Mode Manual	Source	Cursors	Units	X1: -1.168000000000s Y1: -343.750∨ X2: -988.000000000ms Y2: 225.000∨

Total Quality. Assured.

Page 30 of 103

D.3	Table: Unde	ervoltage thre	shold stage			Р
Parameter	Settings	Test 1	Test 2	Test 3	Limits	
Trip value L1 [V]	184	183.76	183.74	184.36	184±2.3	
Trip time [ms]	100	164	174	176	<200	
Trip value L2[V]	184	183.17	183.53	183.61	184±2.3	
Trip time [ms]	100	180	174	160	<200	
Trip value L3[V]	184	184.05	184.63	184.40	184±2.3	
Trip time [ms]	100	168	154	162	<200	
Trip value L1L2L3 [V]	184	184.91	184.99	184.50	184±2.3	
Trip time [ms]	100	176	182	180	<200	
	KEYSIGHT TECHNOLOGIES 1 500V/ 2		500∨/ <mark>4</mark> 100A		Manual X1(1): -1.00400000 X2(1): -822.000000 ΔX: 182.000000 1/ΔX:	00000s
Cursor:	s Menu Mode Manual	Source	Cursors	Units	X1: -1.00400000000s Y1: -343.3 X2: -822.000000000ms Y2: 225.0	

Total Quality. Assured.

Page 31 of 103

D.3	Table: Unde	erfrequency th	nreshold stag	je		Р		
Parameter	Settings	Test 1	Test 2	Test 3	Limits			
Trip value [Hz]	47.5	47.51	47.53	47.50	47.5±0.05			
Trip time ms]	100	168	180	180	<200			
	KEYSIGHT TECHNOLOGIES) 19051434: Mon Aug 31 11:03	1.10 2020		
	1 500V/ 2		00A/ 4 5.00\		.000s Roll			

Total Quality. Assured.

Report no. 200827077GZU-001

0.3	Table: Over	frequency the	reshold stage	•		Р
Parameter	Settings	Test 1	Test 2	Test 3	Limits	
rip value Hz]	51.5	51.46	51.45	51.49	51.5±0.05	
rip time ns]	100	174	176	162	<200	
			Trip t	ime		
	KEYSIGHT TECHNOLOGIES	DSC)-X 3014T, MY592	43053, 07.30.20)19051434: Mon Aug 31 10:58:24	1 2020
	1 500∨/ 2	100A/ 3	100A/ 4 5.00\	// 100.0ms/ -1	.106s Roll	\sim
1⊈•		WWWW			Manual X1(1): -1.22200000 X2(1): -1.04600000	
²₽₽	wwww	wwww	www-		ΔX: 176.000000 1/ΔX:	000ms
₃₽₽	wwww				5.6	818Hz
			x2			
Chann	el 4 Probe Menu: 50.	0:1	72	0		
+ 3) Units Volts	Probe 50.0 : 1		 Skew 0.0s 	Probe Check	

Page 32 of 103

Total Quality. Assured.

Page 33 of 103

Report no. 200827077GZU-001

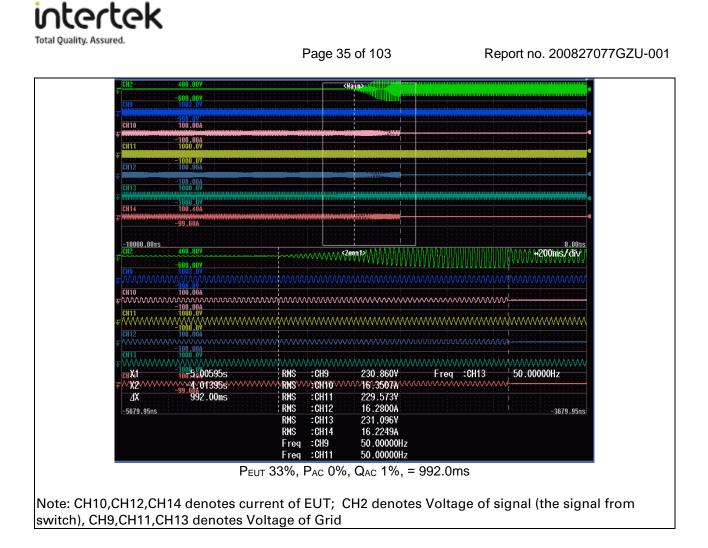
No. PEUT'I of EUT CEUT Reactive of CAL in E.1.011 PAC2 (% of mominal) QAC3 (% of mominal) Run on time (ms) PEUT (KW) Actual Qf VDC Remarks ⁴ 1 100 100 0 0 992.0 33.74 1.00 850 Test A at BL 2 666 666 0 0 779.0 21.96 1.00 600 Test A at BL 3 33 0 0 930.0 11.38 1.00 600 Test A at BL 4 100 100 -5 5.5 637.0 33.74 0.98 850 Test A at IB 6 100 100 -5 554.0 33.74 1.03 850 Test A at IB 7 100 100 5 554.0 33.74 1.03 850 Test A at IB 100 <td< th=""><th>D.3</th><th></th><th>Table: Islar</th><th>nding</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Ρ</th><th></th></td<>	D.3		Table: Islar	nding								Ρ	
2 66 66 0 0 779.0 21.96 1.00 600 Test B at BL 3 33 33 0 0 930.0 11.38 1.00 300 Test C at BL 4 100 100 -5 -5 523.0 33.74 0.98 850 Test A at IB 5 100 100 -5 5 637.0 33.74 0.93 850 Test A at IB 6 100 100 0 -5 956.0 33.74 1.03 850 Test A at IB 9 100 100 5 -5 557.0 33.74 1.02 850 Test A at IB 10 100 100 5 5 695.0 33.74 1.04 850 Test A at IB 1.02 60	No.	(% of EUT	load (% of QL in	(% of	(% of	time			VDC	F	Rema	arks	4)
3 33 33 0 0 930.0 11.38 1.00 300 Test C at BL 4 100 100 -5 -5 523.0 33.74 0.98 850 Test A at IB 5 100 100 -5 0 663.0 33.74 0.95 850 Test A at IB 6 100 100 -5 5 637.0 33.74 0.93 850 Test A at IB 7 100 100 0 -5 956.0 33.74 1.03 850 Test A at IB 9 100 100 5 -5 557.0 33.74 1.02 850 Test A at IB 11 100 100 5 0 951.0 33.74 1.04 850 Test A at IB 12 66 66 0 -5 854.0 21.96 1.02 600 Test A at IB 13 66 66 0 -2 972.0	1	100	100	0	0	992.0	33.74	1.00	850	Test	Α	at	BL
4 100 100 -5 -5 523.0 33.74 0.98 850 Test A at IB 5 100 100 -5 0 663.0 33.74 0.95 850 Test A at IB 6 100 100 -5 5 637.0 33.74 0.93 850 Test A at IB 7 100 100 0 -5 554.0 33.74 1.03 850 Test A at IB 8 100 100 0 5 557.0 33.74 1.02 850 Test A at IB 9 100 100 5 0 951.0 33.74 1.04 850 Test A at IB 10 100 100 5 5 695.0 33.74 1.04 850 Test A at IB 11 100 100 5 5 695.0 33.74 1.04 850 Test B at IB 12 66 66 0 -4 876.0 <t< td=""><td>2</td><td>66</td><td>66</td><td>0</td><td>0</td><td>779.0</td><td>21.96</td><td>1.00</td><td>600</td><td>Test</td><td>В</td><td>at</td><td>BL</td></t<>	2	66	66	0	0	779.0	21.96	1.00	600	Test	В	at	BL
5 100 100 -5 0 663.0 33.74 0.95 850 Test A at IB 6 100 100 -5 5 637.0 33.74 0.93 850 Test A at IB 7 100 100 0 -5 956.0 33.74 1.03 850 Test A at IB 8 100 100 0 5 534.0 33.75 0.97 850 Test A at IB 9 100 100 5 -5 557.0 33.74 1.02 850 Test A at IB 10 100 100 5 0 951.0 33.74 1.02 850 Test A at IB 11 100 100 5 5 695.0 33.74 1.04 850 Test A at IB 12 66 66 0 -4 876.0 21.96 1.02 600 Test B at IB 14 66 66 0 -1 630.0 <td< td=""><td>3</td><td>33</td><td>33</td><td>0</td><td>0</td><td>930.0</td><td>11.38</td><td>1.00</td><td>300</td><td>Test</td><td>С</td><td>at</td><td>BL</td></td<>	3	33	33	0	0	930.0	11.38	1.00	300	Test	С	at	BL
6 100 100 -5 5 637.0 33.74 0.93 850 Test A at IB 7 100 100 0 -5 956.0 33.74 1.03 850 Test A at IB 8 100 100 5 -5 557.0 33.74 1.02 850 Test A at IB 9 100 100 5 -5 557.0 33.74 1.02 850 Test A at IB 10 100 100 5 5 695.0 33.74 1.04 850 Test A at IB 11 100 100 5 5 695.0 33.74 1.04 850 Test A at IB 12 66 66 0 -4 876.0 21.96 1.02 600 Test B IB IB IB	4	100	100	-5	-5	523.0	33.74	0.98	850	Test	Α	at	IB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	100	100	-5	0	663.0	33.74	0.95	850	Test	Α	at	IB
8 100 100 0 5 534.0 33.75 0.97 850 Test A at IB 9 100 100 5 -5 557.0 33.74 1.02 850 Test A at IB 10 100 100 5 0 951.0 33.74 1.08 850 Test A at IB 11 100 100 5 5 695.0 33.74 1.04 850 Test A at IB 12 66 66 0 -5 854.0 21.96 1.02 600 Test B I IB 13 66 66 0 -2 972.0 21.96 1.01 600 Test B I IB 14 66 66 0 -1 630.0 21.96 1.01 600 Test B IB 15 66 <td>6</td> <td>100</td> <td>100</td> <td>-5</td> <td>5</td> <td>637.0</td> <td>33.74</td> <td>0.93</td> <td>850</td> <td>Test</td> <td>Α</td> <td>at</td> <td>IB</td>	6	100	100	-5	5	637.0	33.74	0.93	850	Test	Α	at	IB
9 100 100 5 -5 557.0 33.74 1.02 850 Test A at IB 10 100 100 5 0 951.0 33.74 1.08 850 Test A at IB 11 100 100 5 5 695.0 33.74 1.04 850 Test A at IB 12 66 66 0 -5 854.0 21.96 1.02 600 Test B at IB 13 66 66 0 -4 876.0 21.96 1.02 600 Test B IB 14 66 66 0 -2 972.0 21.96 1.01 600 Test B IB 15 66 66 0 -1 630.0 21.96 0.99 600 Test B IB 16 66 66 0 <td>7</td> <td>100</td> <td>100</td> <td>0</td> <td>-5</td> <td>956.0</td> <td>33.74</td> <td>1.03</td> <td>850</td> <td>Test</td> <td>Α</td> <td>at</td> <td>IB</td>	7	100	100	0	-5	956.0	33.74	1.03	850	Test	Α	at	IB
1010010050951.0 33.74 1.08850TestA atIB1110010055695.0 33.74 1.04850TestA atIB1266660-5854.021.961.02600TestB atIB1366660-4876.021.961.02600TestB atIB1466660-3887.021.961.02600TestB atIB1566660-2972.021.961.01600TestB atIB1666660-1630.021.961.01600TestB atIB1766660-1992.021.960.99600TestB atIB18666602903.021.960.99600TestB atIB19666603979.021.960.99600TestB atIB20666605946.021.960.97600TestB atIB21666605946.021.960.97600TestB atIB2233330-5916.011.381.03300TestC atIB2233330 <td>8</td> <td>100</td> <td>100</td> <td>0</td> <td>5</td> <td>534.0</td> <td>33.75</td> <td>0.97</td> <td>850</td> <td>Test</td> <td>Α</td> <td>at</td> <td>IB</td>	8	100	100	0	5	534.0	33.75	0.97	850	Test	Α	at	IB
1110010055695.0 33.74 1.04850Test A at IB1266660-5854.0 21.96 1.02600Test B at IB1366660-4876.0 21.96 1.02600Test B at IB1466660-3887.0 21.96 1.02600Test B at IB1566660-2972.0 21.96 1.01600Test B at IB1666660-1630.0 21.96 1.01600Test B at IB17666601992.0 21.96 0.99600Test B at IB18666602903.0 21.96 0.99600Test B at IB19666603979.0 21.96 0.98600Test B at IB20666604985.0 21.96 0.98600Test B at IB21666605946.0 21.96 0.97600Test B at IB2233330-5916.011.381.03300Test C at IB2333330-2946.011.381.01300Test C at IB2433330-2946.011.381.01300Test C at IB2533330-1836.011.380.99 <t< td=""><td>9</td><td>100</td><td>100</td><td>5</td><td>-5</td><td>557.0</td><td>33.74</td><td>1.02</td><td>850</td><td>Test</td><td>Α</td><td>at</td><td>IB</td></t<>	9	100	100	5	-5	557.0	33.74	1.02	850	Test	Α	at	IB
12 66 66 0 -5 854.0 21.96 1.02 600 Test B at IB 13 66 66 0 -4 876.0 21.96 1.02 600 Test B at IB 14 66 66 0 -3 887.0 21.96 1.02 600 Test B at IB 15 66 66 0 -2 972.0 21.96 1.01 600 Test B at IB 16 66 66 0 -1 630.0 21.96 1.01 600 Test B at IB 17 66 66 0 1 992.0 21.96 0.99 600 Test B at IB 18 66 66 0 2 903.0 21.96 0.98 600 Test B at IB 20 66 66 0 4 985.0 21.96 0.98 600 Test B at	10	100	100	5	0	951.0	33.74	1.08	850	Test	Α	at	IB
13 66 66 0 -4 876.0 21.96 1.02 600 Test B at IB 14 66 66 0 -3 887.0 21.96 1.02 600 Test B at IB 15 66 66 0 -2 972.0 21.96 1.01 600 Test B at IB 16 66 66 0 -1 630.0 21.96 1.01 600 Test B at IB 17 66 66 0 1 992.0 21.96 0.99 600 Test B at IB 18 66 66 0 2 903.0 21.96 0.99 600 Test B at IB 19 66 66 0 3 979.0 21.96 0.98 600 Test B at IB 20 66 66 0 5 946.0 21.96 0.97 600 Test	11	100	100	5	5	695.0	33.74	1.04	850	Test	А	at	IB
14 66 66 0 -3 887.0 21.96 1.02 600 Test B at IB 15 66 66 0 -2 972.0 21.96 1.01 600 Test B at IB 16 66 66 0 -1 630.0 21.96 1.01 600 Test B at IB 17 66 66 0 1 992.0 21.96 0.99 600 Test B at IB 18 66 66 0 2 903.0 21.96 0.99 600 Test B at IB 19 66 66 0 3 979.0 21.96 0.98 600 Test Bat IB 20 66 66 0 4 985.0 21.96 0.97 600 Test B at IB 21 66 66 0 -5 916.0 11.38 1.03 300 Test C at <	12	66	66	0	-5	854.0	21.96	1.02	600	Test	В	at	IB
15 66 66 0 -2 972.0 21.96 1.01 600 Test B at IB 16 66 66 0 -1 630.0 21.96 1.01 600 Test B at IB 17 66 66 0 1 992.0 21.96 0.99 600 Test B at IB 18 66 66 0 2 903.0 21.96 0.99 600 Test B at IB 19 66 66 0 3 979.0 21.96 0.98 600 Test B at IB 20 66 66 0 4 985.0 21.96 0.97 600 Test B at IB 21 66 66 0 -5 916.0 11.38 1.03 300 Test C at IB 23	13	66	66	0	-4	876.0	21.96	1.02	600	Test	В	at	IB
1666660-1630.021.961.01600TestBatIB17666601992.021.960.99600TestBatIB18666602903.021.960.99600TestBatIB19666603979.021.960.98600TestBatIB20666604985.021.960.98600TestBatIB21666604985.021.960.97600TestBatIB21666605946.021.960.97600TestBatIB2233330-5916.011.381.03300TestCatIB2333330-4930.011.381.03300TestCatIB2433330-2946.011.381.01300TestCatIB2533330-2946.011.381.01300TestCatIB27333301992.011.380.99300TestCatIB28333302984.011.380.99300 <td< td=""><td>14</td><td>66</td><td>66</td><td>0</td><td>-3</td><td>887.0</td><td>21.96</td><td>1.02</td><td>600</td><td>Test</td><td>В</td><td>at</td><td>IB</td></td<>	14	66	66	0	-3	887.0	21.96	1.02	600	Test	В	at	IB
17666601992.021.960.99600TestBatIB18666602903.021.960.99600TestBatIB19666603979.021.960.98600TestBatIB20666604985.021.960.98600TestBatIB21666604985.021.960.97600TestBatIB21666605946.021.960.97600TestBatIB2233330-5916.011.381.03300TestCatIB2333330-4930.011.381.03300TestCatIB2433330-2946.011.381.01300TestCatIB2533330-2946.011.381.01300TestCatIB2633330-1836.011.381.01300TestCatIB27333302984.011.380.99300TestCatIB28333302984.011.380.99300 <td< td=""><td>15</td><td>66</td><td>66</td><td>0</td><td>-2</td><td>972.0</td><td>21.96</td><td>1.01</td><td>600</td><td>Test</td><td>В</td><td>at</td><td>IB</td></td<>	15	66	66	0	-2	972.0	21.96	1.01	600	Test	В	at	IB
18666602903.021.960.99600TestBatIB19666603979.021.960.98600TestBatIB20666604985.021.960.98600TestBatIB21666604985.021.960.97600TestBatIB21666605946.021.960.97600TestBatIB2233330-5916.011.381.03300TestCatIB2333330-4930.011.381.03300TestCatIB2433330-3905.011.381.02300TestCatIB2433330-2946.011.381.01300TestCatIB2533330-1836.011.381.01300TestCatIB26333301992.011.380.99300TestCatIB28333302984.011.380.99300TestCatIB29333303943.011.380.99300 <td< td=""><td>16</td><td>66</td><td>66</td><td>0</td><td>-1</td><td>630.0</td><td>21.96</td><td>1.01</td><td>600</td><td>Test</td><td>В</td><td>at</td><td>IB</td></td<>	16	66	66	0	-1	630.0	21.96	1.01	600	Test	В	at	IB
19666603979.021.960.98600TestBatIB20666604985.021.960.98600TestBatIB21666605946.021.960.97600TestBatIB2233330-5916.011.381.03300TestCatIB2333330-4930.011.381.03300TestCatIB2433330-4930.011.381.02300TestCatIB2433330-2946.011.381.01300TestCatIB2533330-2946.011.381.01300TestCatIB2633330-1836.011.381.01300TestCatIB27333301992.011.380.99300TestCatIB28333302984.011.380.99300TestCatIB29333304953.011.380.99300TestCatIB303304953.011.380.98300Test	17	66	66	0	1	992.0	21.96	0.99	600	Test	В	at	IB
20 66 66 0 4 985.0 21.96 0.98 600 Test B at IB 21 66 66 0 5 946.0 21.96 0.97 600 Test B at IB 22 33 33 0 -5 916.0 11.38 1.03 300 Test C at IB 23 33 33 0 -4 930.0 11.38 1.03 300 Test C at IB 24 33 33 0 -4 930.0 11.38 1.02 300 Test C at IB 24 33 33 0 -2 946.0 11.38 1.01 300 Test C at IB 25 33 33 0 -2 946.0 11.38 1.01 300 Test C at IB 26 33 33 0 1 992.0 11.38 0.99 300 Test	18	66	66	0	2	903.0	21.96	0.99	600	Test	В	at	IB
21666605946.021.960.97600TestBatIB2233330-5916.011.381.03300TestCatIB2333330-4930.011.381.03300TestCatIB2433330-4930.011.381.02300TestCatIB2433330-3905.011.381.02300TestCatIB2533330-2946.011.381.01300TestCatIB2633330-1836.011.381.01300TestCatIB27333301992.011.380.99300TestCatIB28333302984.011.380.99300TestCatIB29333303943.011.380.99300TestCatIB303304953.011.380.98300TestCatIB	19	66	66	0	3	979.0	21.96	0.98	600	Test	В	at	IB
22 33 33 0 -5 916.0 11.38 1.03 300 Test C at IB 23 33 33 0 -4 930.0 11.38 1.03 300 Test C at IB 24 33 33 0 -4 930.0 11.38 1.02 300 Test C at IB 24 33 33 0 -3 905.0 11.38 1.02 300 Test C at IB 25 33 33 0 -2 946.0 11.38 1.01 300 Test C at IB 26 33 33 0 -1 836.0 11.38 1.01 300 Test C at IB 27 33 33 0 1 992.0 11.38 0.99 300 Test C at IB 28 33 33 0 2 984.0 11.38 0.99 300 Test C at IB 29 33 33 0 3 943.0 11.38 0.99 300 Test C at IB 30 33 0 4	20	66	66	0	4	985.0	21.96	0.98	600	Test	В	at	IB
23 33 33 0 -4 930.0 11.38 1.03 300 Test C at IB 24 33 33 0 -3 905.0 11.38 1.02 300 Test C at IB 25 33 33 0 -2 946.0 11.38 1.01 300 Test C at IB 26 33 33 0 -1 836.0 11.38 1.01 300 Test C at IB 27 33 33 0 -1 836.0 11.38 0.99 300 Test C at IB 28 33 33 0 1 992.0 11.38 0.99 300 Test C at IB 28 33 33 0 2 984.0 11.38 0.99 300 Test C at IB 29 33 33 0 3 943.0 11.38 0.99 300 Test C at IB 30 33 0 4 953.0 11.38 0.99 300 Test C at IB	21	66	66	0	5	946.0	21.96	0.97	600	Test	В	at	IB
24 33 33 0 -3 905.0 11.38 1.02 300 Test C at IB 25 33 33 0 -2 946.0 11.38 1.01 300 Test C at IB 26 33 33 0 -1 836.0 11.38 1.01 300 Test C at IB 27 33 33 0 -1 836.0 11.38 0.99 300 Test C at IB 27 33 33 0 1 992.0 11.38 0.99 300 Test C at IB 28 33 33 0 2 984.0 11.38 0.99 300 Test C at IB 29 33 33 0 2 984.0 11.38 0.99 300 Test C at IB 30 33 0 3 943.0 11.38 0.99 300 Test C at IB 30 33 0 4 953.0 11.38 0.98 300 Test C at IB	22	33	33	0	-5	916.0	11.38	1.03	300	Test	С	at	IB
2533330-2946.011.381.01300TestCatIB2633330-1836.011.381.01300TestCatIB27333301992.011.380.99300TestCatIB28333302984.011.380.99300TestCatIB29333303943.011.380.99300TestCatIB303304953.011.380.98300TestCatIB	23	33	33	0	-4	930.0	11.38	1.03	300	Test	С	at	IB
26 33 33 0 -1 836.0 11.38 1.01 300 Test C at IB 27 33 33 0 1 992.0 11.38 0.99 300 Test C at IB 28 33 33 0 2 984.0 11.38 0.99 300 Test C at IB 29 33 33 0 3 943.0 11.38 0.99 300 Test C at IB 30 33 0 4 953.0 11.38 0.98 300 Test C at IB	24	33	33	0	-3	905.0	11.38	1.02	300	Test	С	at	IB
27 33 33 0 1 992.0 11.38 0.99 300 Test C at IB 28 33 33 0 2 984.0 11.38 0.99 300 Test C at IB 29 33 33 0 3 943.0 11.38 0.99 300 Test C at IB 30 33 0 3 943.0 11.38 0.99 300 Test C at IB 30 33 33 0 4 953.0 11.38 0.98 300 Test C at IB	25	33	33	0	-2	946.0	11.38	1.01	300	Test	С	at	IB
28 33 33 0 2 984.0 11.38 0.99 300 Test C at IB 29 33 33 0 3 943.0 11.38 0.99 300 Test C at IB 30 33 33 0 4 953.0 11.38 0.98 300 Test C at IB	26	33	33	0	-1	836.0	11.38	1.01	300	Test	С	at	IB
29 33 33 0 3 943.0 11.38 0.99 300 Test C at IB 30 33 33 0 4 953.0 11.38 0.98 300 Test C at IB	27	33	33	0	1	992.0	11.38	0.99	300	Test	С	at	IB
29 33 33 0 3 943.0 11.38 0.99 300 Test C at IB 30 33 33 0 4 953.0 11.38 0.98 300 Test C at IB	28	33	33	0	2	984.0	11.38	0.99	300	Test	С	at	IB
30 33 33 0 4 953.0 11.38 0.98 300 Test C at IB	29	33	33	0		943.0	11.38	0.99	300			at	IB
	30			0	4								IB
	31			0	5								IB

Remark:

¹⁾ PEUT: EUT output power

²⁾ PAC: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0% test condition value.

³⁾ QAC: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0% test condition value.


⁴⁾ BL: Balance condition, IB: Imbalance condition.

⁵⁾ *Note: test condition A (100%): If any of the recorded run-on times are longer than the one recorded for the rated balance condition, i.e. test procedure 6.1 f), then the non-shaded parameter combinations (no.32~47) also require testing.

Page 34 of 103

EHS CHS	-1200.0¥ 1002.0¥						
Ŧ CH10	-998.0V 250.00A						
EH11	-250.00A 1000.0¥						
÷ CH12	-1000.0¥ 250.00A						
CH13	-250.00A 1000.0¥						
CH14 F	-1000-09 251.00A						•
10000 0000	-249.00A			t t			0.00mm
-10000.00ms CH2 	800.0V -1280.0V		www.	WWW.WWStree	***		0.00ms √yip∕,¢iiv
± ₩	1002.0V AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA						
₽ ₽ VVVVVVVV	250.00A \///////////////////////////////////	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.w	www.www		mmm	
₹ WWWWW	250.00A -250.00A 1000.0V -250.00A -250.00A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	wwww	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~
	250.00A ^///////////////////////////////////						
	25T 501 1395s	WWWWWWW RMS	······· :CH9	229.052V	Freq :CH	00000000000000000000000000000000000000	MMMMM DOOHz
± ₩X2 ₩₩₩ ДX	000-21955000 -249-000 992.00ms	MMMARKSAA RMS	////CH10/////	231.483V		www.	
-5819.95ms		RMS	:CH12 :CH13	48.2954A 230.988V			-3819.95ms
		RMS	:CH14	47.8105A			
		- rea	: I :H :	DU UUUUUHZ			
			:CH11	50.00000Hz 50.00000Hz			
	P	Freq	:CH11		o, = 992ms	i	
	409.00V	Freq	:CH11	50.00000Hz %, Qac 0%	o, = 992ms		
₹	409.009 -600.009 1002.09	Freq	PAC 09	50.00000Hz %, QAC 0%	o, = 992ms		
₹ <mark>CH2</mark> 5 (19 6 (11) 6 (11) 5 (11) 5 (11)	409.00V -609.00V 102.0V -938.0V 250.00A	Freq	PAC 09	50.00000Hz %, QAC 0%	o, = 992ms		
÷ CH11	400.00V -600.00V -002.0V -918.0V 250.00A -250.00A -250.00A	Freq	PAC 09	50.00000Hz %, QAC 0%	o, = 992ms		
∓ CH11 ∓ CH12 ∓	400.00V -608.00V 1002.0V 208.0V 209.00A -250.00A -250.00A -1000.0V -1000.0V -250.00A	Freq	PAC 09	50.00000Hz %, QAC 0%	o, = 992ms		
∓ CH11 T CH12 T CH13 ₹ CH13	400.00V -600.00V 1002.0V -958.0V -250.00A -250.00A -250.00A -250.00A -250.00A -250.00A -250.00A	Freq	PAC 09	50.00000Hz %, QAC 0%	o, = 992ms		
∓ CH11 ∓ CH12 ∓	400.00V -608.00V 1002.0V 208.0V 209.00A -250.00A -250.00A -1000.0V -1000.0V -250.00A	Freq	PAC 09	50.00000Hz %, QAC 0%	o, = 992ms		
∓ CH11 T CH12 T CH13 ₹ CH13	400.00V -608.00V 1002.0V 250.00A 250.00A 250.00A 250.00A 250.00A -250.00A -250.00A -250.00A -250.00A -251.00A -249.00A	Freq EUT 100%,		50.0000Hz %, QAC 0%	o, = 992ms		
+ -	400.00V -600.00V 1002.0V -956.0V -250.00A -250.00A -250.00A -250.00A -250.00A -250.00A -250.00A -250.00A -250.00A -250.00A -250.00A -250.00A -250.00A -250.00A -250.00A	Freq EUT 100%,		50.0000Hz %, QAC 0%			200m\$/div/
+ - CH11 - CH12 - + - CH13 + - CH14 - - CH14 + - CH14 + - CH14 - - CH14 + CH2 CH14 + CH2 CH14	400.00V -600.00V 250.00A -250.00A -250.00A -250.00A -250.00A -250.00A -250.00A -250.00A -251.00A -251.00A -251.00A -251.00A -250.00A	Freq EUT 100%,		50.0000Hz %, QAC 0%			200m\$/div/
	400.00V -600.00V -600.00V -600.00V -250.00A -250.00A -250.00A -250.00A -250.00A -250.00A -250.00A -250.00A -250.00A	Freq EUT 100%,		50.0000Hz %, QAC 0%			200ms//div/
	400.00V -600.00V -600.00V -250.00A	Freq EUT 100%,		50.0000Hz %, QAC 0%			200ms//div/
	400.00V -600.00V -600.00V -600.00V -250.00A -250.00A -250.00A -250.00A -250.00A -250.00A -250.00A -250.00A -250.00A	Freq EUT 100%,		50.0000Hz %, QAC 0%			
Image: second	400.00V -600.00V -600.00V -600.00V -250.00A -250	Freq EUT 100%,		50.00000Hz %, QAC 0%	AMMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		
Image: second	400.00V -600.00V -600.00V -750.00A -750	Freq EUT 100%,		50.0000Hz %, QAC 0%	AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
÷ •	400.00V -600.00V -600.00V -600.00V -250.00A -250	Freq EUT 100%,	:CH11 PAC 00 PAC	50.00000Hz %, QAC 0%	AMMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
F CH11 CH12 CH13 CH13 CH14 CH14 CH14 CH15 CH14 CH16 CH14 CH17 CH14 CH18 CH14 CH19 CH15 CH19 CH11 CH11 CH12 CH11 CH12 CH11 CH12 CH12 CH13 CH11 CH12 CH12 CH13 CH13 CH14 CH14 CH14 CH15 CH14 CH16 CH17 CH17 CH18 CH18 CH19 CH19 CH12 CH113 CH12 CH13 CH14 CH14 CH14 CH15 CH14 CH14 CH14 CH15 CH14 CH14 CH14 CH15 CH14 CH15 CH14 CH14	400.00V -600.00V -600.00V -600.00V -250.00A -250	Freq EUT 100%,	:CH11 PAC 00	50.00000Hz %, QAC 0%	AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	

intertek Total Quality. Assured.

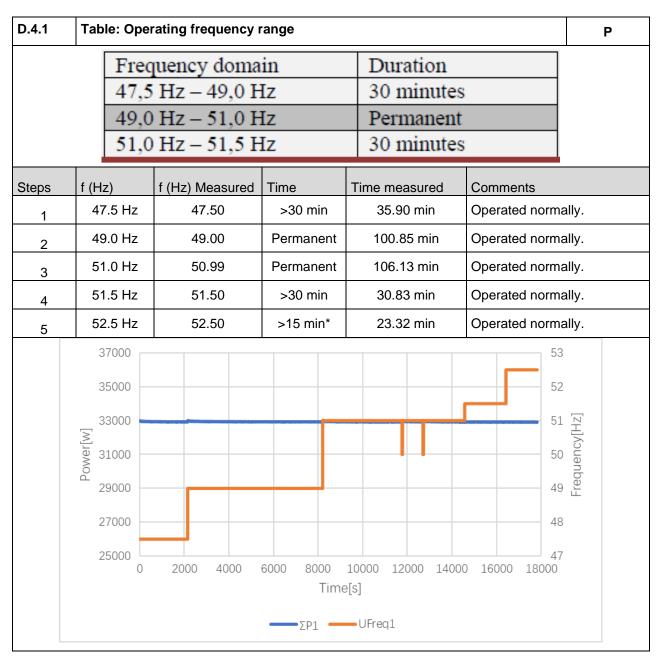
Page 36 of 103

D.3			-	fault tolerand 549-1:2019	ce					Р
		ambie	ent temper	ature (°C) :				25	5	
		mode	l/type of po	ower supply	:			Ρ	V simulator	
No.	componer	nt No.	fault	test voltage (V)	test time	fuse No.	fuse current (A	۹)	result	
1.	XLC2 Pin 2 to 3		Short	850	10 min				Inverter operated norma No damaged.No hazaro	-
2.	RB 137		Open	850	10 min				Inverter disconnected fi grid immediately. Error message:" The grid vol error". No damaged.No hazards.	tage
3.	RB 139		Short	850	10 min				Inverter disconnected from grid immediately. Error message:" The grid voltage error". No damaged.No hazards.	
4.	RB 131		Open	850	10 min				Inverter disconnected from grid immediately. Error message:" The grid voltage error". No damaged.No hazards.	
5.	RB 122		Open	850	10 min				Inverter disconnected fr grid immediately. Error message:" The grid volt error". No damaged.No hazards.	tage
6.	RB 110		Short	850	10 min				Inverter disconnected fi grid immediately. Error message:" The grid volt error". No damaged.No hazards.	tage
7.	RB 96		Short	850	10 min				Inverter disconnected from grid immediately. Error message:"GFCI error". No damaged.No hazard.	
8.	RB 11		Open	850	10 min				Inverter disconnected fi grid immediately. Error message:"GFCI error".	
9.	RB 8		Short	850	10 min				damaged.No hazard. Inverter disconnected fr grid immediately. Error message:"GFCI error". damaged.No hazard.	

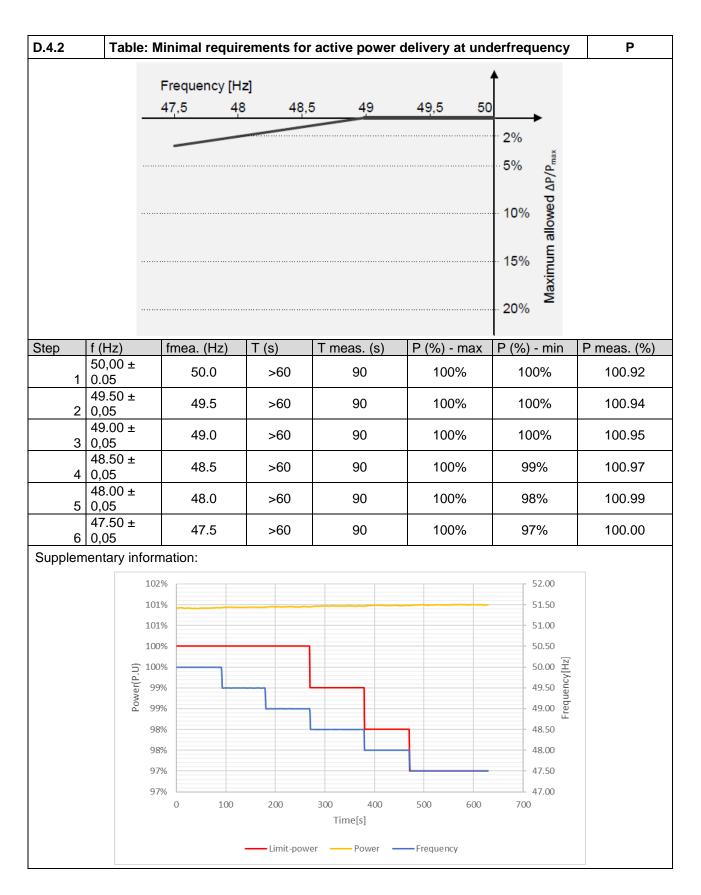
Total Quality. Assured.

Page 37 of 103

10.	UB1 PIN5 to 6	Short	850	10 min		 Inverter disconnected from
10.		Short				grid immediately. Error
						message:"GFCI error". No
			050	40		damaged.No hazard.
11.	RB 23	Short	850	10 min		 grid immediately. Error
						message:"GFCI error". No
						damaged.No hazard.
12.	QD1 PIN1 to 2	Short	850	10 min		 Inverter disconnected from
						grid immediately. Error message:"The DCI
						overcurrent". No
						damaged.No hazard.
13.	XLC2 PIN1 to 2	Short	850	10 min		 Inverter disconnected from
						grid immediately. Error
						message:"The
						communication error". No damaged.No hazard.
14.	DC 71	Short	850	10 min		Inverter disconnected from
14.		Short	650	TO min		 grid immediately. Error
						message:"The
						communication error". No
						damaged.No hazard.
15.	U13 PIN2 to 3	Short	850	10 min		 Inverter disconnected from
						grid immediately. Error
						message:"The communication error". No
						damaged.No hazard.
16.	XLC1 PIN1 to 2	Short	850	10 min		 Inverter did not start-up.
10.		Onort	000	10 11111		Error message:"The SPI
						error"No damage.No hazard.
17.	RC6	Short	850	10 min		 Inverter disconnected from
						grid immediately. Error
						message:" The grid voltage error". No damaged.No
						hazards.
18.	RC19	Short	850	10 min		 Inverter disconnected from
10.		Short	000		-	 grid immediately. Error
						message:" The grid voltage
						error". No damaged.No
						hazards.
19.	UC627 PIN2 to 3	Short	850	10 min		 Inverter disconnected from grid immediately. Error
						message:" The grid voltage
						error". No damaged.No
						hazards.
20.	UC637 PIN12 to	Short	850	10 min		 Inverter disconnected from
	13		-			grid immediately. Error
						message:"GFCI error". No
						damaged.No hazard.

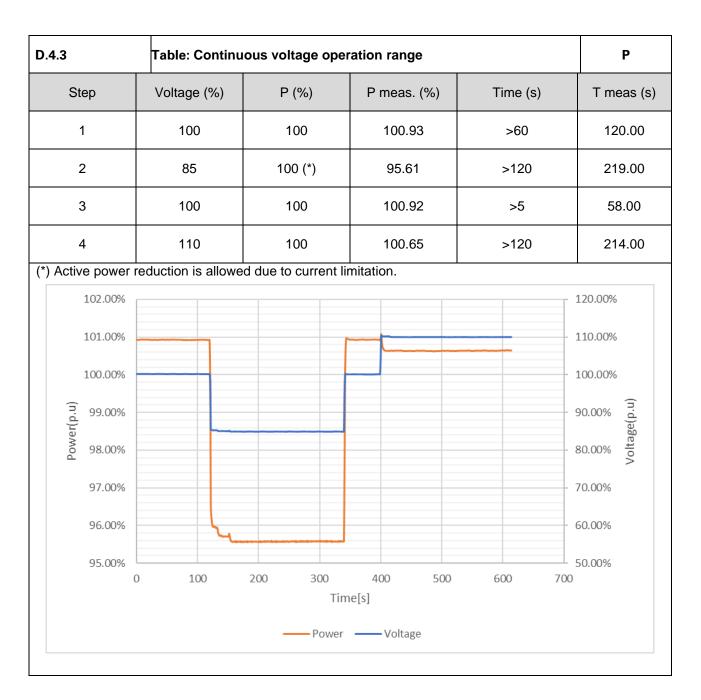

Total Quality. Assured.

Page 38 of 103

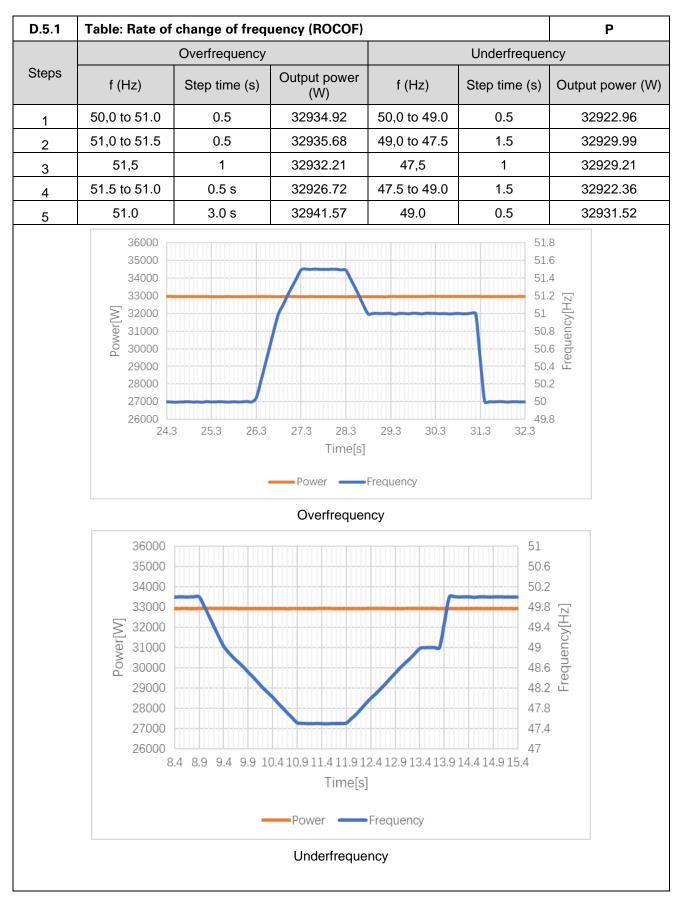

21.	RC 167	Short before start-up	850	10 min			Inverter did not start- up.Error message:"The ISO error"No damage.No hazard.				
22.	RC 98	Short before start-up	850	10 min			Inverter did not start- up.Error message:"The ISO error"No damage.No hazard.				
	Supplement: s-c: short-circuited, o-c: open-circuited, o-l: overload										

Total Quality. Assured.

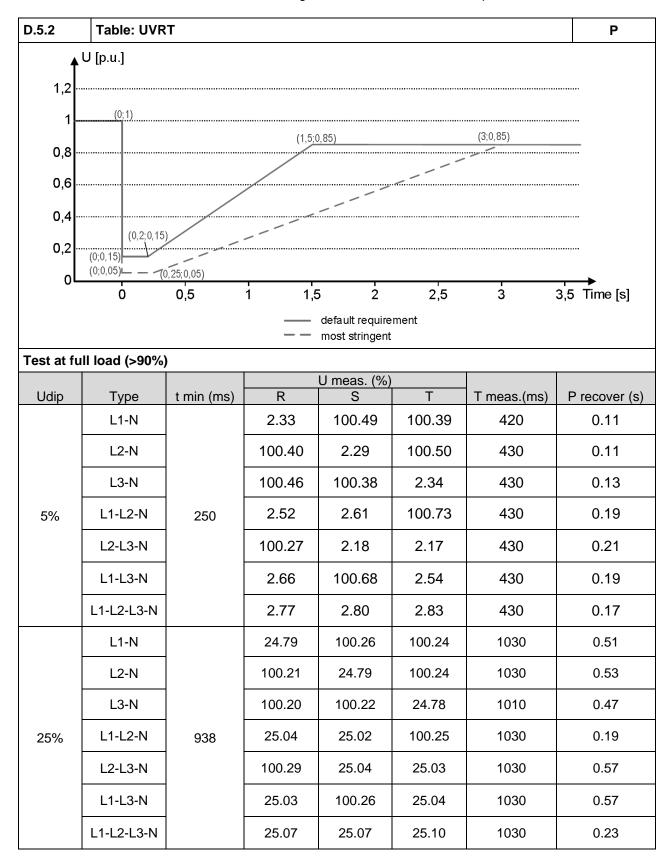
Page 39 of 103



Page 40 of 103



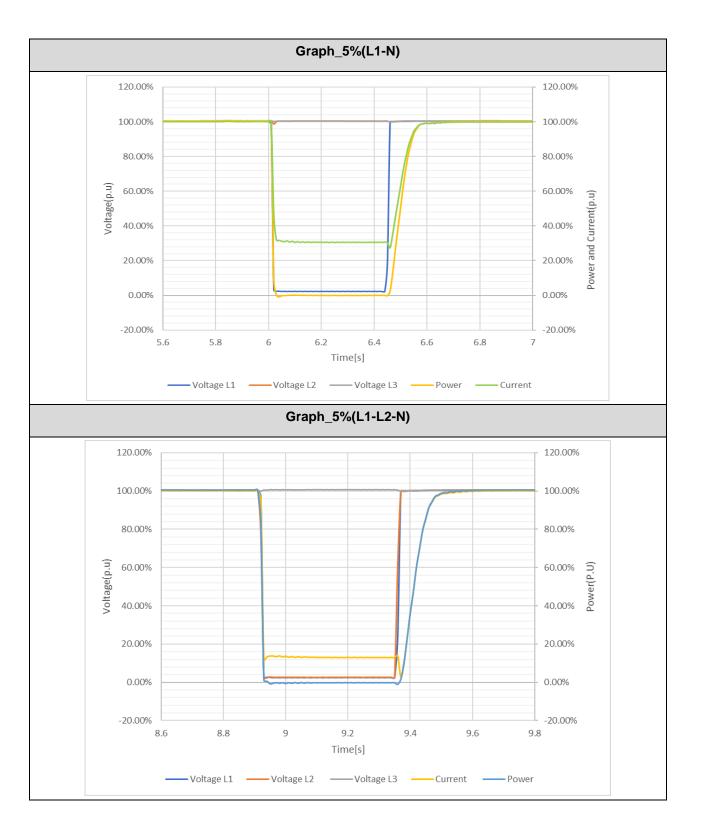
Page 41 of 103


Total Quality. Assured.

Page 42 of 103

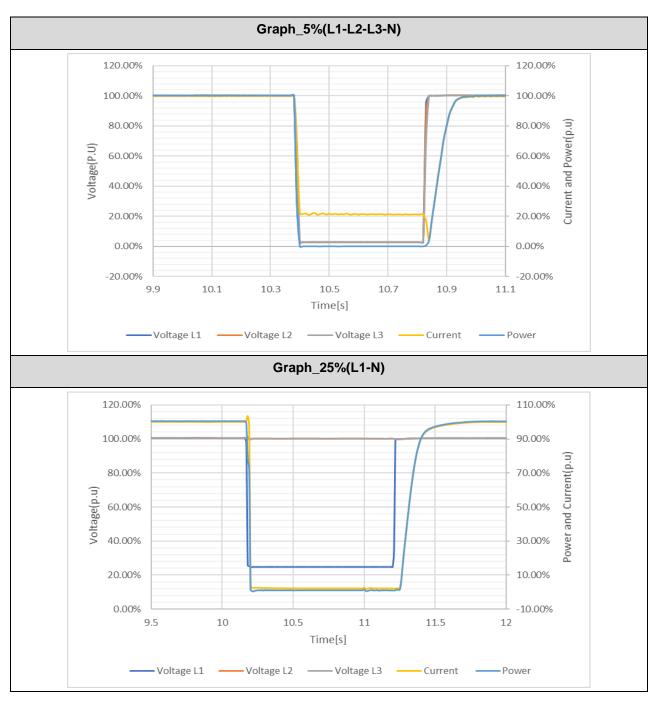
Total Quality. Assured.

Page 43 of 103


Total Quality. Assured.

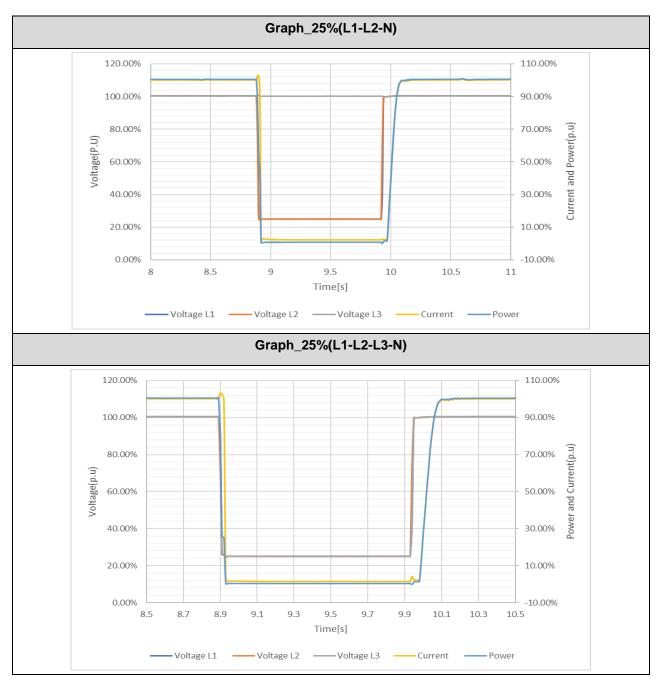
Page 44 of 103

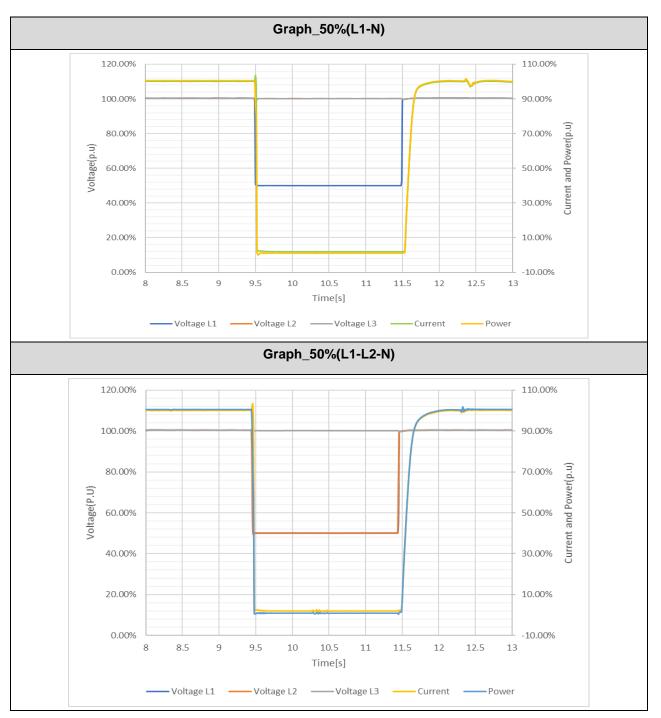
50%	L1-N		50.04	100.21	100.19	1990	0.45
	L2-N		100.22	50.06	100.19	1990	0.55
	L3-N		100.25	100.21	50.04	1990	0.39
	L1-L2-N	1797	50.07	50.07	100.22	1990	0.55
	L2-L3-N		100.25	50.07	50.07	1990	0.53
	L1-L3-N		50.1	100.23	50.08	1990	0.55
	L1-L2-L3-N		50.10	.10 50.10 50.11		1990	0.21
	L1-N		75.66	100.06	100.11	3040	0.3
	L2-N		100.22	74.98	100.26	3030	0.31
	L3-N		100.25	100.21	74.98	3030	0.31
75%	L1-L2-N	2656	75.03	74.99	100.27	3030	0.71
	L2-L3-N		100.26	75.01	75.05	3030	0.72
	L1-L3-N		75.04	100.18	75.04	3030	0.42
	L1-L2-L3-N		75.05	75.04	75.04	3030	0.23



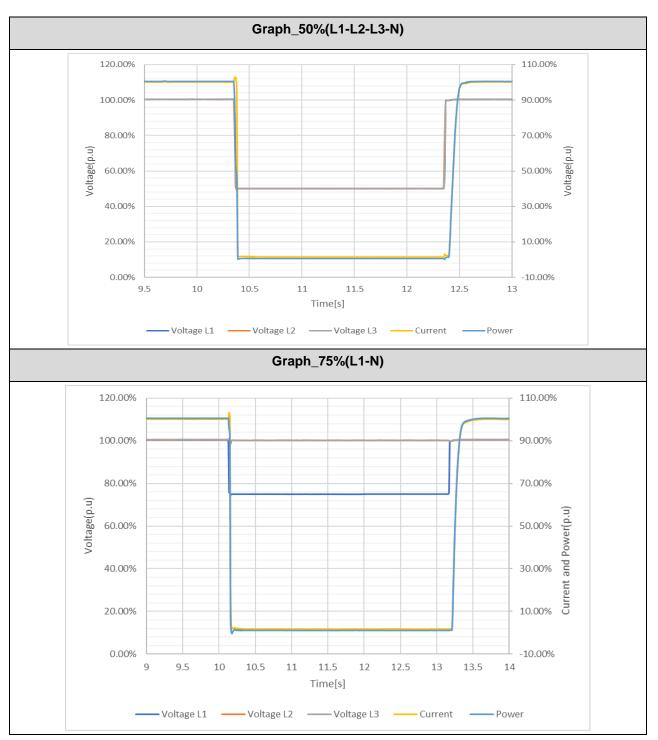
Page 45 of 103

Total Quality. Assured.


Page 46 of 103


Total Quality. Assured.

Page 47 of 103



Page 48 of 103

Page 49 of 103

Total Quality. Assured.

Page 50 of 103

Page 51 of 103

Test at partial load (20%) U meas. (%)												
Udip	Туре	t min (ms)	R	S	Т	T meas.(ms)	P recover (s)					
	L1-N		2.08	100.18	100.18	450	0.02					
	L2-N		100.17	2.14	100.16	450	0.03					
	L3-N		100.19	100.23	2.15	450	0.05					
5%	L1-L2-N	250	2.21	2.15	100.30	450	0.04					
	L2-L3-N		100.30	2.18	2.17	450	0.04					
	L1-L3-N		2.20	100.28	2.21	450	0.04					
	L1-L2-L3-N		2.17	2.16	2.18	450	0.03					
	L1-N		24.97	100.15	100.18	1050	0.12					
	L2-N		100.19	24.96	100.22	1050	0.11					
	L3-N		100.19	100.18	25.01	1050	0.13					
25%	L1-L2-N	938	25.01	24.98	100.24	1050	0.12					
	L2-L3-N		100.16	24.98	24.99	1050	0.11					
	L1-L3-N		25.00	100.20	24.99	1050	0.1					
	L1-L2-L3-N		25.00	25.01	25.06	1050	0.16					
	L1-N		50.04	100.12	100.23	1890	0.10					
	L2-N		100.20	50.02	100.19	1890	0.10					
	L3-N		100.20	100.15	50.02	1890	0.10					
50%	L1-L2-N	1797	50.04	50.07	100.23	1890	0.12					
	L2-L3-N		100.23	50.06	50.04	1890	0.10					
	L1-L3-N		50.07	100.23	50.05	1890	0.12					
	L1-L2-L3-N		50.05	50.08	50.07	1890	0.14					
	L1-N		74.91	100.20	100.22	3050	0.12					
750/	L2-N	2656	100.20	74.88	100.20	3050	0.12					
75%	L3-N	2000	100.16	100.17	74.88	3040	0.12					
	L1-L2-N		74.91	74.90	100.23	3050	0.12					

Total Quality. Assured.

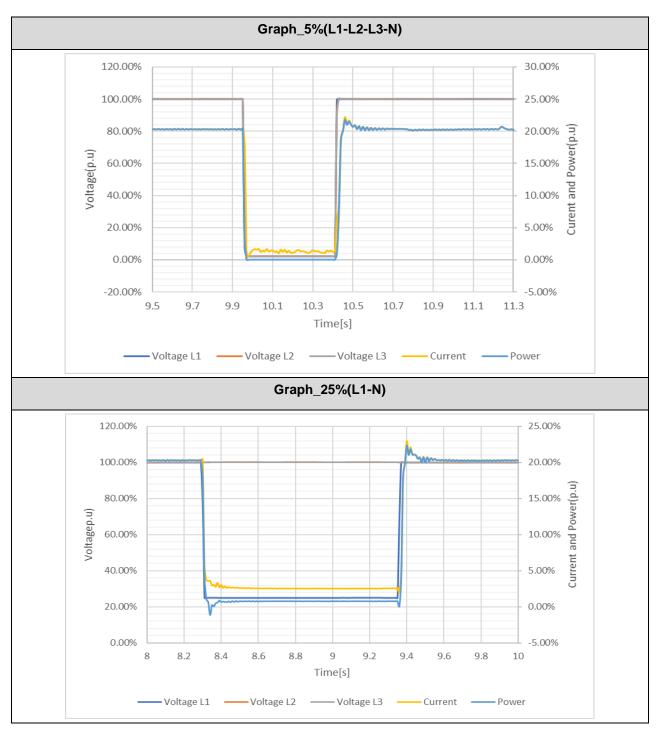
Page 52 of 103

Report no. 200827077GZU-001

L2-L3-N	100.20	74.90	74.91	3050	0.12
L1-L3-N	74.94	100.17	74.90	3050	0.12
L1-L2-L3-N	74.93	74.92	74.95	3050	0.12

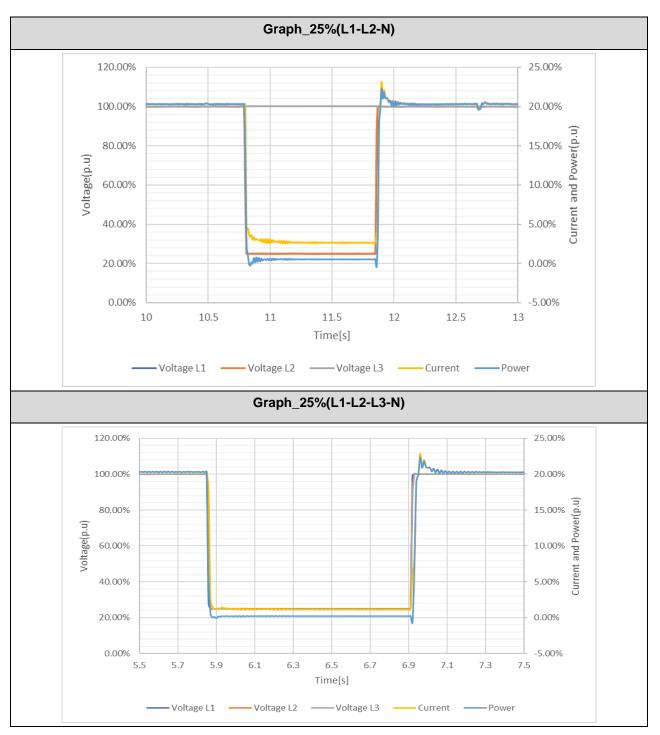
Remark:

The tests are performed together with clause 4.7.4.2.2 Zero current mode and enabling of default setting: undervoltage of 50%Un

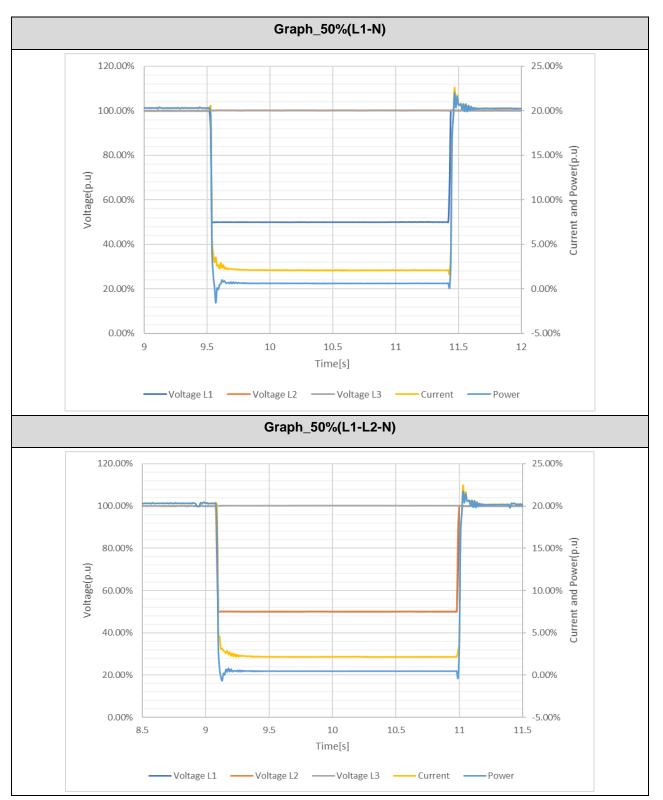

red.

Page 53 of 103

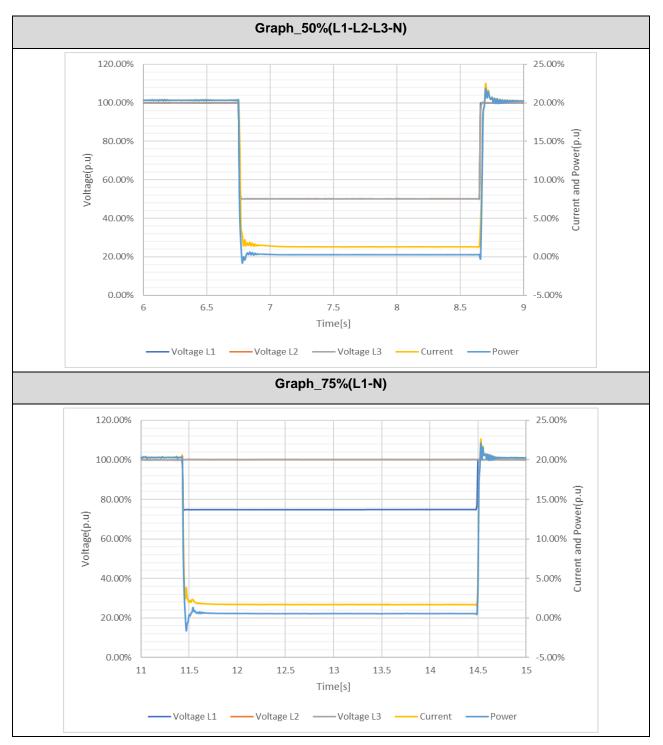
intertek Total Quality. Assured.

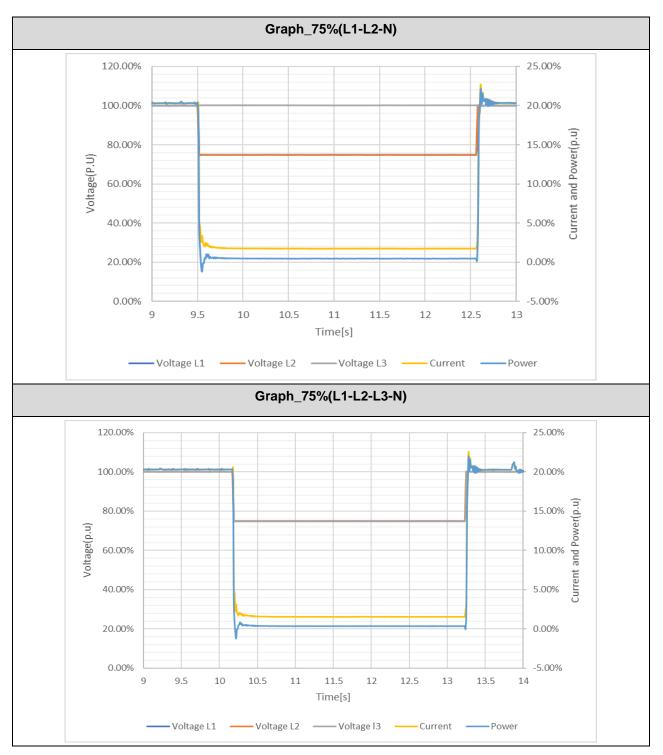

Page 54 of 103

Total Quality. Assured.


Page 55 of 103

Total Quality. Assured.


Page 56 of 103


Total Quality. Assured.

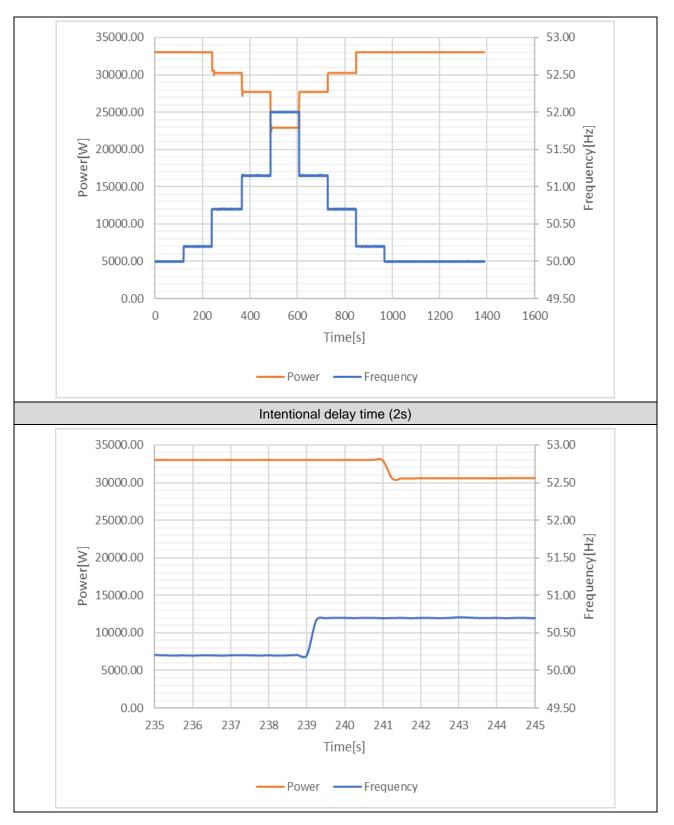
Page 57 of 103

Page 58 of 103

Total Quality. Assured.

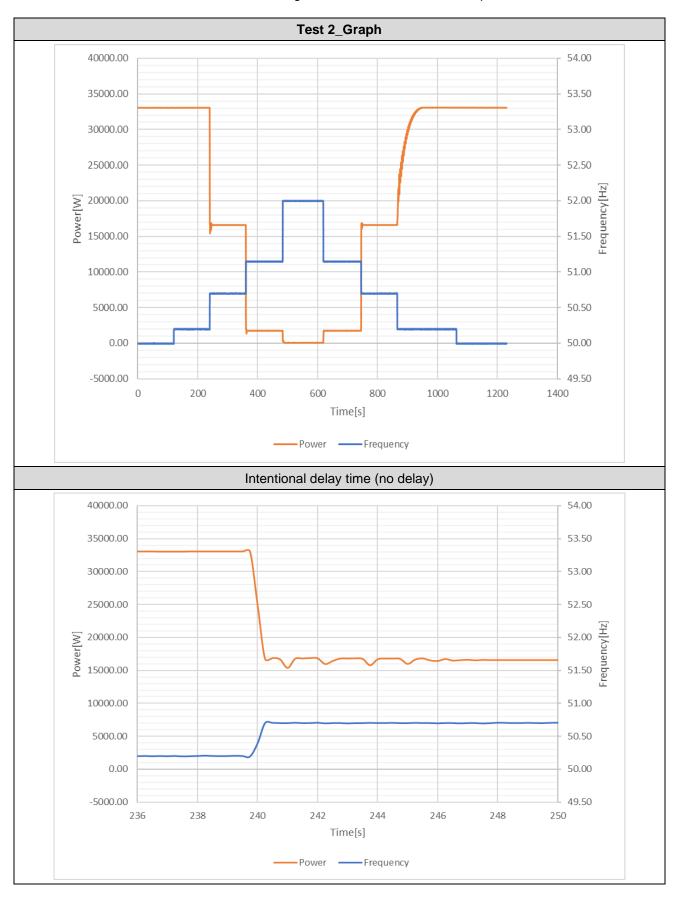
Page 59 of 103

D.6.1 Table: P	ower res	ponse to ov	ver frequency				Р			
	1	100% Pn, f1	=50.2Hz; droop	=12%; f-stop	o deactivated	l, with delay o	f2s			
Test 1	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	The response times Tan_90 % <2s	For The settling times T≤20s			
50Hz ± 0.01Hz	50.00	33040.99	33000.00							
50.2Hz ± 0.01Hz	50.20	33037.79	33000.00							
50.70Hz ± 0.01Hz	50.70	30267.75	30250.00	17.75	± 3300	0.5	8.3			
51.15Hz ± 0.01Hz	51.15	27712.44	27775.00	-62.56	± 3300	0.1	0.2			
52.0Hz ± 0.01Hz	52.00	22912.95	23100.00	-187.05	± 3300	0.4	4.5			
51.15Hz ± 0.01Hz	51.15	27710.86	27775.00	-64.14	± 3300	0.8	1.0			
50.70Hz ± 0.01Hz	50.70	30246.98	30250.00	-3.02	± 3300	1.1	2.0			
50.2Hz ± 0.01Hz	50.20	33033.40	33000.00							
50Hz ± 0.01Hz	50.00	33032.54	33000.00							
	100% Pn, f1 =50.2Hz; droop=2%; f-stop deactivated, no delay									
Test 2	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	The response times Tan_90 % <2s	For The settling times T≤20s			
50Hz ± 0.01Hz	50.00	33027.02	33000.00							
50.2Hz ± 0.01Hz	50.20	33010.88	33000.00							
50.70Hz ± 0.01Hz	50.70	16556.06	16500.00	56.06	± 3300	0.4	0.5			
51.15Hz ± 0.01Hz	51.15	1719.87	1650.00	69.87	± 3300	0.4	0.5			
52.0Hz ± 0.01Hz	52.00	21.52	0.00	21.52	± 3300	0.5	4.5			
51.15Hz ± 0.01Hz	51.15	1719.17	1650.00	69.17	± 3300	1.0	2.8			
50.70Hz ± 0.01Hz	50.70	16568.14	16500.00	68.14	± 3300	0.4	2.7			
50.2Hz ± 0.01Hz	50.20	33047.33	33000.00							
50Hz ± 0.01Hz	50.00	33040.23	33000.00							



Page 60 of 103

		50% Pn	, f1 =52.0Hz; dr	roop=5%; f-s	top deactivat	ed, no delay	
Test 3	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	The response times Tan_90 % <2s	For The settling times T≤20s
50Hz ± 0.01Hz	50.00	16516.23					
51.0Hz ± 0.01Hz	51.00	16514.68	16500.00	14.68	± 3300		
51.70Hz ± 0.01Hz	51.70	16514.36	16500.00	14.36	± 3300		
52.0Hz ± 0.01Hz	52.00	16514.75	16500.00	14.75	± 3300		
51.70Hz ± 0.01Hz	51.70	16514.24	16500.00	14.24	± 3300		
51.00Hz ± 0.01Hz	51.00	16513.23	16500.00	13.23	± 3300		
50Hz ± 0.01Hz	50.00	16513.00					
		-	Hz; droop=5%;	•	, no delay, D	eactivation tir	ne t _{stop} 30s
Test 4	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	The response times Tan_90 % <2s	For The settling times T≤20s
50Hz ± 0.01Hz	50.00	33147.49	33000.00				
50.2Hz ± 0.01Hz	50.20	33144.97	33000.00				
50.70Hz ± 0.01Hz	50.70	26443.23	26400.00	43.23	± 3300	0.4	0.5
51.15Hz ± 0.01Hz	51.15	20419.18	20460.00	-40.82	± 3300	0.4	5.3
52.0Hz ± 0.01Hz	52.00	9212.16	9240.00	-27.84	± 3300	0.4	0.5
51.15Hz ± 0.01Hz	51.15	9212.34	9240.00	-27.66	± 3300		
50.70Hz ± 0.01Hz	50.70	9212.29	9240.00	-27.71	± 3300		
50.2Hz ± 0.01Hz	50.20	9212.35	9240.00	-27.65	± 3300		
50Hz ± 0.01Hz	50.00	33145.23	9240.00				




Page 61 of 103

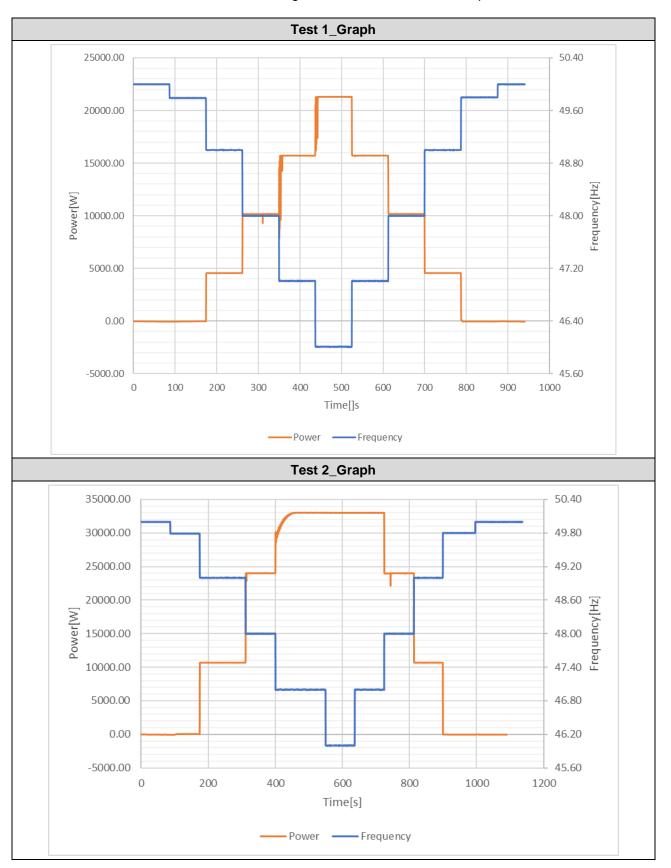
Page 62 of 103

TRF No. C10/11_a

Page 64 of 103

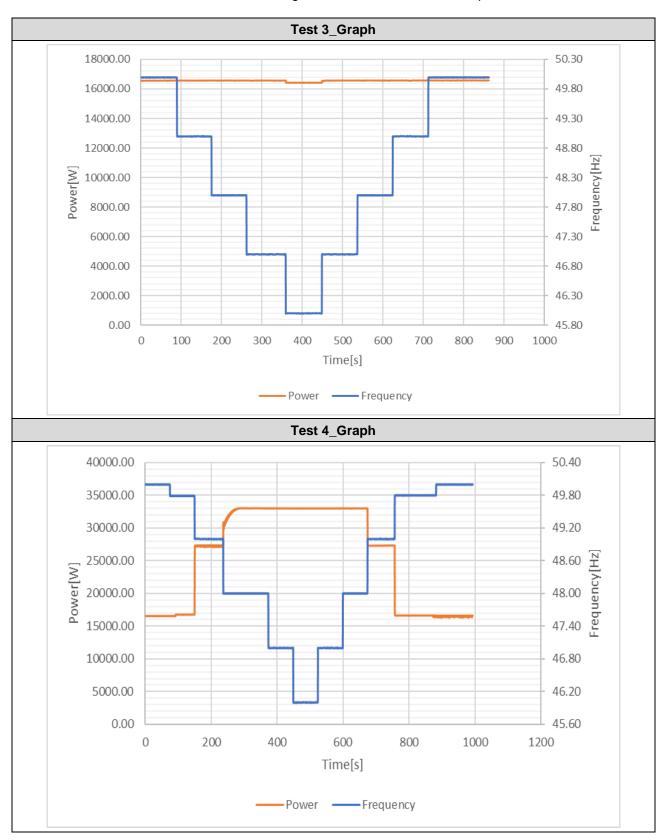
D.6.2 Table:	Power res	sponse to u	nder frequency	y			Р
Test 1			0% Pn, f1 =49.8	BHz; droop=	12%; with dela	y of 2 s	
	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	The response times Tan_90 % <10s	For The settling times T≤30s
50Hz ± 0.01Hz	50.00	-33.79					
49.8Hz ± 0.01Hz	49.80	-31.39	0.00	-31.39	± 3300		
49.0Hz ± 0.01z	49.00	4559.98	4400.00	159.98	± 3300	0.6	0.7
48.0Hz ± 0.01z	48.00	10144.96	9900.00	244.96	± 3300	0.6	0.7
47.0Hz ± 0.01z	47.00	15707.97	15400.00	307.97	± 3300	5.0	8.0
46.0Hz ± 0.01z	46.00	21283.06	20900.00	383.06	± 3300	4.2	6.1
47.0Hz ± 0.01z	47.00	15716.75	15400.00	316.75	± 3300	0.4	0.5
48.0Hz ± 0.01z	48.00	10156.45	9900.00	256.45	± 3300	0.8	1.0
49.0Hz ± 0.01z	49.00	4562.59	4400.00	162.59	± 3300	0.4	0.5
49.8Hz ± 0.01Hz	49.80	-33.67	0.00	-33.67	± 3300	0.4	2.5
50.0Hz ± 0.01Hz	50.00	-33.01					

			0% Pn, f1 :	=49.8Hz; dro	oop=5%; no de	lay	
Test 2	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	The response times Tan_90 % <10s	For The settling times T≤30s
50Hz ± 0.01Hz	50.00	-32.63					
49.8Hz ± 0.01Hz	49.80	53.02	0.00	53.02	± 3300		
49.0Hz ± 0.01Hz	49.00	10682.14	10560.00	122.14	± 3300	0.6	0.8
48.0Hz ± 0.01Hz	48.00	24006.46	23760.00	246.46	± 3300	0.7	2.7
47.0Hz ± 0.01Hz	47.00	33021.13	33000.00	21.13	± 3300		
46.0Hz ± 0.01Hz	46.00	33014.13	33000.00	14.13	± 3300		
47.0Hz ± 0.01Hz	47.00	33016.29	33000.00	16.29	± 3300		
48.0Hz ± 0.01Hz	48.00	23993.58	23760.00	233.58	± 3300		
49.0Hz ± 0.01Hz	49.00	10686.46	10560.00	126.46	± 3300	0.4	0.5
49.8Hz ± 0.01Hz	49.80	-28.22	0.00	-28.22	± 3300	0.4	0.5
50.0Hz ± 0.01Hz	50.00	-33.29					

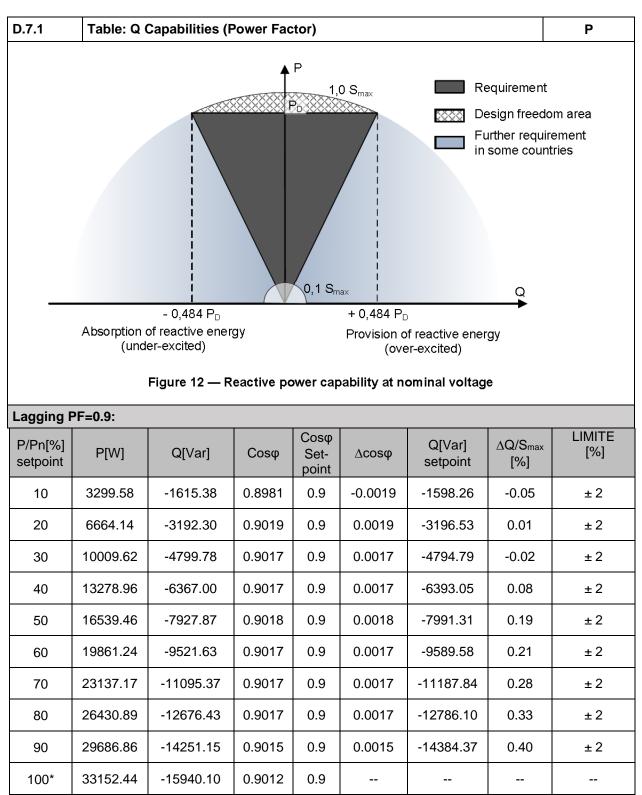

Page 65 of 103

		50% Pn, f1 =46.0Hz; droop=5%; no delay										
Test 3	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	The response times Tan_90 % <10s	For The settling times T≤30s					
50Hz ± 0.01Hz	50.00	16541.15										
49.0Hz ± 0.01Hz	49.00	16547.93	16500.00	47.93	± 3300							
48.0Hz ± 0.01Hz	48.00	16548.49	16500.00	48.49	± 3300							
47.0Hz ± 0.01Hz	47.00	16547.22	16500.00	47.22	± 3300							
46.0Hz ± 0.01Hz	46.00	16404.66	16500.00	-95.34	± 3300							
47.0Hz ± 0.01Hz	47.00	16546.08	16500.00	46.08	± 3300							
48.0Hz ± 0.01Hz	48.00	16549.39	16500.00	49.39	± 3300							
49.0Hz ± 0.01Hz	49.00	16549.98	16500.00	49.98	± 3300							
50.0Hz ± 0.01Hz	50.00	16551.72										

			50% P	n, f1 =49.8H	z; droop=5%;		
Test 4	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	The response times Tan_90 % <10s	For The settling times T≤30s
50Hz ± 0.01Hz	50.00	16550.88					
49.8Hz ± 0.01Hz	49.80	16715.59	16500.00	215.59	± 3300		
49.0Hz ± 0.01Hz	49.00	27314.68	27060.00	254.68	± 3300	1.1	1.3
48.0Hz ± 0.01Hz	48.00	32956.94	33000.00	-43.06	± 3300		
47.0Hz ± 0.01Hz	47.00	33016.36	33000.00	16.36	± 3300		
46.0Hz ± 0.01Hz	46.00	33009.67	33000.00	9.67	± 3300		
47.0Hz ± 0.01Hz	47.00	33012.08	33000.00	12.08	± 3300		
48.0Hz ± 0.01Hz	48.00	33013.18	33000.00	13.18	± 3300	0.0	0.0
49.0Hz ± 0.01Hz	49.00	27319.57	27060.00	259.57	± 3300	0.4	0.5
49.8Hz ± 0.01Hz	49.80	16628.38	16500.00	128.38	± 3300		
50.0Hz ± 0.01Hz	50.00	16610.11					

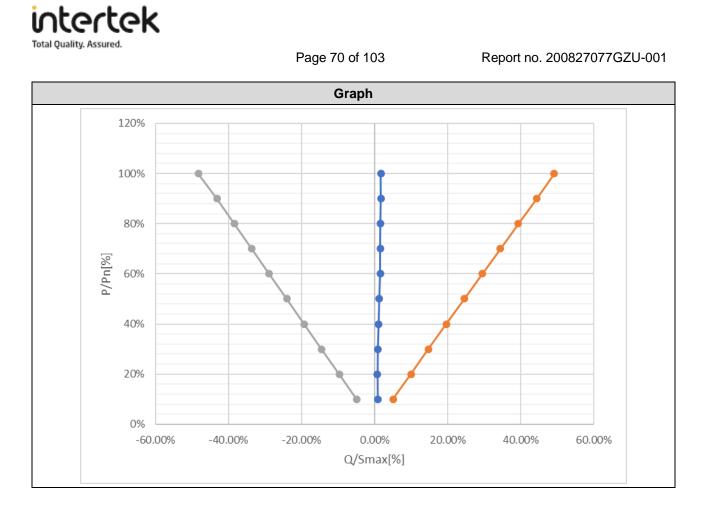


Page 66 of 103



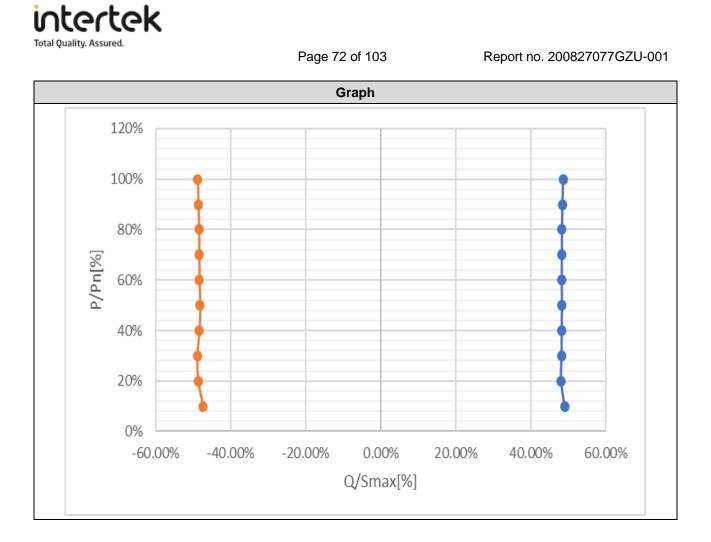
Page 67 of 103

Total Quality. Assured.


Page 68 of 103

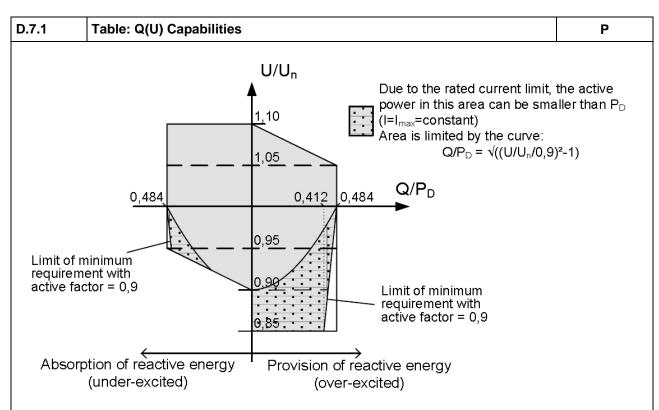
Total Quality. Assured.

Page 69 of 103


Leading	PF=0.9:							
P/Pn[%] setpoint	P[W]	Q[Var]	Cosφ	Cosφ Set- point	∆cosφ	Q[Var] setpoint	∆Q/S _{max} [%]	LIMITE [%]
10	3376.20	1677.25	0.8956	0.9	-0.0044	1598.26	0.24	±2
20	6667.98	3289.68	0.8968	0.9	-0.0032	3196.53	0.28	±2
30	9951.95	4862.60	0.8985	0.9	-0.0015	4794.79	0.21	±2
40	13256.88	6483.10	0.8983	0.9	-0.0017	6393.05	0.27	± 2
50	16552.12	8118.57	0.8978	0.9	-0.0022	7991.31	0.39	±2
60	19842.73	9747.75	0.8975	0.9	-0.0025	9589.58	0.48	±2
70	23155.57	11385.27	0.8974	0.9	-0.0026	11187.84	0.60	± 2
80	26420.62	12999.83	0.8973	0.9	-0.0027	12786.10	0.65	± 2
90	29711.29	14643.69	0.8970	0.9	-0.0030	14384.37	0.79	± 2
100	32962.09	16238.42	0.8971	0.9				
Q=0:								
P/Pn[%] setpoint	P[W]	Q[Var]	Cosφ	Cosφ Set- point	∆cosφ	Q[Var] setpoint	∆Q/S _{max} [%]	LIMITE [%]
10	3315.72	278.80	0.9963	1	-0.0037	0.00	0.84	± 2
20	6678.68	249.80	0.9993	1	-0.0007	0.00	0.76	± 2
30	9968.89	280.76	0.9996	1	-0.0004	0.00	0.85	± 2
40	13256.93	357.67	0.9996	1	-0.0004	0.00	1.08	± 2
50	16593.57	430.99	0.9996	1	-0.0004	0.00	1.31	±2
60	19887.97	506.41	0.9997	1	-0.0003	0.00	1.53	± 2
70	23192.74	512.80	0.9996	1	-0.0004	0.00	1.55	± 2
80	26495.98	530.98	0.9996	1	-0.0004	0.00	1.61	± 2
90	29793.59	579.14	0.9995	1	-0.0005	0.00	1.75	± 2
100	33121.91	566.09	0.9995	1	-0.0005	0.00	1.72	± 2

Total Quality. Assured.

Page 71 of 103


Q=48.43%Pn	I					
P/Pn[%] setpoint	P[W]	Q[Var]	Cosφ	Q[Var] setpoint	∆Q/S _{max} [%]	LIMITE [%]
10	3261.93	16171.58	0.1977	15981.9	0.57	± 2
20	6660.33	15862.95	0.3871	15981.9	-0.36	± 2
30	9970.06	15898.96	0.5313	15981.9	-0.25	± 2
40	13240.08	15920.81	0.6394	15981.9	-0.19	± 2
50	16590.81	15935.38	0.7212	15981.9	-0.14	± 2
60	19843.31	15925.79	0.7799	15981.9	-0.17	± 2
70	23132.84	15930.05	0.8236	15981.9	-0.16	± 2
80	26456.71	15942.77	0.8565	15981.9	-0.12	± 2
90	29757.73	15982.68	0.8810	15981.9	0.00	± 2
100*	33079.34	16045.68	0.8997	15981.9	0.19	± 2
Q=-48.43%Pi	n					
P/Pn[%] setpoint	P[W]	Q[Var]	Cosφ	Q[Var] setpoint	∆Q/S _{max} [%]	LIMITE [%]
10	3315.26	-15642.03	0.2073	-15981.9	1.03	± 2
20	6630.89	-16072.19	0.3814	-15981.9	-0.27	± 2
30	10008.91	-16147.80	0.5268	-15981.9	-0.50	± 2
40	13247.64	-15962.75	0.6386	-15981.9	0.06	± 2
50	16557.73	-15898.62	0.7213	-15981.9	0.25	± 2
60	19900.56	-15963.07	0.7801	-15981.9	0.06	± 2
70	23222.84	-15976.84	0.8239	-15981.9	0.02	± 2
80	26543.79	-15992.09	0.8566	-15981.9	-0.03	± 2
90	29757.31	-16044.16	0.8802	-15981.9	-0.19	± 2
				-15981.9		

Total Quality. Assured.

Page 73 of 103

Report no. 200827077GZU-001

Figure 13 — Reactive power capability at active power P_D in the voltage range (positive sequence component of the fundamental)

Over-excited:										
	AC o	utput	Reactive power measured							
Voltage		Measured		Reactive	Value					
setting [V/Vn]	Voltage [V]	[V/Vn]	Active power [W]	power [Var]	[Q/P _n]	Limits				
1.10	253.27	1.10	33195.88	524.65	0.0159	±0.02				
1.08	249.12	1.08	33198.13	6407.44	0.1942	0.194±0.02				
1.05	241.75	1.05	33074.79	15929.96	0.4827					
1.00	230.63	1.00	33105.58	15944.71	0.4832					
0.95	218.79	0.95	31382.19	15987.57	0.4845					
0.92	211.95	0.92	29879.21	15998.70	0.4848					
0.90	207.27	0.90	29383.03	15983.78	0.4844					
0.85	195.79	0.85	27319.06	16010.46	0.4852					

Page 74 of 103

Under-excite	Under-excited:										
	AC o	utput	React	ive power mea	sured						
Voltage setting		Measured		Reactive	Value						
[V/Vn]	Voltage [V]	[V/Vn]	Active power [W]	power [Var]	[Q/P _n]	Limits					
1.10	253.04	1.10	32979.96	-15956.08	-0.4835						
1.08	248.25	1.08	33031.09	-15984.27	-0.4844						
1.05	241.24	1.05	33029.22	-16016.13	-0.4853						
1.00	230.13	1.00	32978.95	-16066.30	-0.4869						
0.95	218.13	0.95	31243.10	-15883.35	-0.4813						
0.92	211.52	0.92	31869.28	-5782.29	-0.1752	-0.175±0.02					
0.90	207.24	0.90	32961.50	526.72	0.0160	±0.02					

Total Quality. Assured.

Page 75 of 103

D.7.1	Tabl	e: Q Control.	Voltage relat	ed control m	ode		Р
P/Pn [%] Set-point		Vac [V] Set-point	P/Pn [%] measured	Vac [V] Measured	Q [VAr] measured	Q [Var] expected	∆ Q [Var] (≤ ± 5 % Pn)
< 20 %		1,07 Vn	17.09	246.23	251.93	≈0 (< ± 5 % Pn)	0.76
< 20 %		1,09 Vn	17.10	250.63	253.51	≈0 (< ± 5 % Pn)	0.77
<20 %→30 °	%	1,09 Vn	30.13	250.53	-8007.24	-7992.60 (within 10sec)	-0.04
40 %		1,09 Vn	40.06	250.59	-8085.07	-7992.60	-0.28
50 %		1,09 Vn	50.17	250.58	-7894.08	-7992.60	0.30
60 %		1,09 Vn	60.15	250.55	-7768.84	-7992.60	0.68
70 %		1,09 Vn	70.21	250.61	-7857.17	-7992.60	0.41
80 %		1,09 Vn	80.13	250.74	-8082.63	-7992.60	-0.27
90 %		1,09 Vn	90.13	250.75	-7988.91	-7992.60	0.01
100 %		1,09 Vn	100.20	250.86	-8191.61	-7992.60	-0.60
100 %		1,1 Vn	99.91	253.25	-15883.76	-15981.90	0.30
100 % →10 %		1,1 Vn	9.65	253.00	-15919.40	-15981.90	0.19
10 %→ ≤ 5 °	%	1,1 Vn	1.85	253.38	270.66	≈0 (< ± 5 % Pn)	0.82
P/Pn [%] Set-point		Vac [V] Set-point	P/Pn [%] measured	Vac [V] Measured	Q [VAr] measured	Q [Var] expected	∆ Q [Var] (≤ ± 5 % Pn)
< 20 %		0.93 Vn	17.04	214.03	241.36	≈0 (< ± 5 % Pn)	0.73
< 20 %		0.91 Vn	17.02	209.29	235.14	≈0 (< ± 5 % Pn)	0.71
<20 %→30 ′	%	0.91 Vn	30.00	209.15	8128.06	7992.60 (within 10sec)	0.41
40 %		0.91 Vn	40.09	209.19	7879.79	7992.60	-0.34
50 %		0.91 Vn	50.12	209.19	8039.83	7992.60	0.14
60 %		0.91 Vn	60.14	209.30	7945.63	7992.60	-0.14
70 %		0.91 Vn	70.13	209.33	8113.97	7992.60	0.37
80 %		0.91 Vn	80.04	209.47	8102.79	7992.60	0.33
90 %		0.91 Vn	89.97	209.68	7907.07	7992.60	-0.26

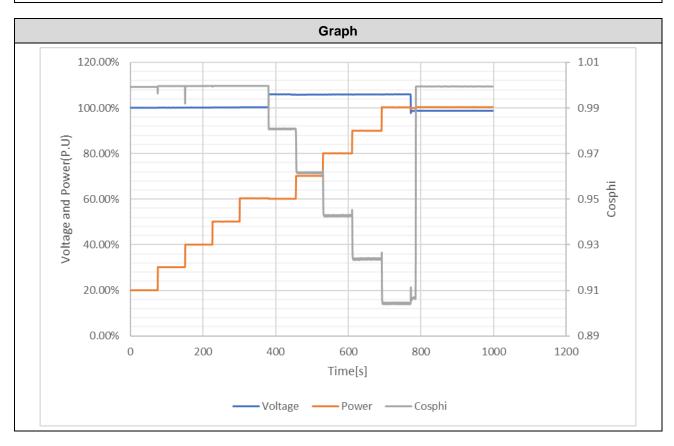
Total Quality. Assured.

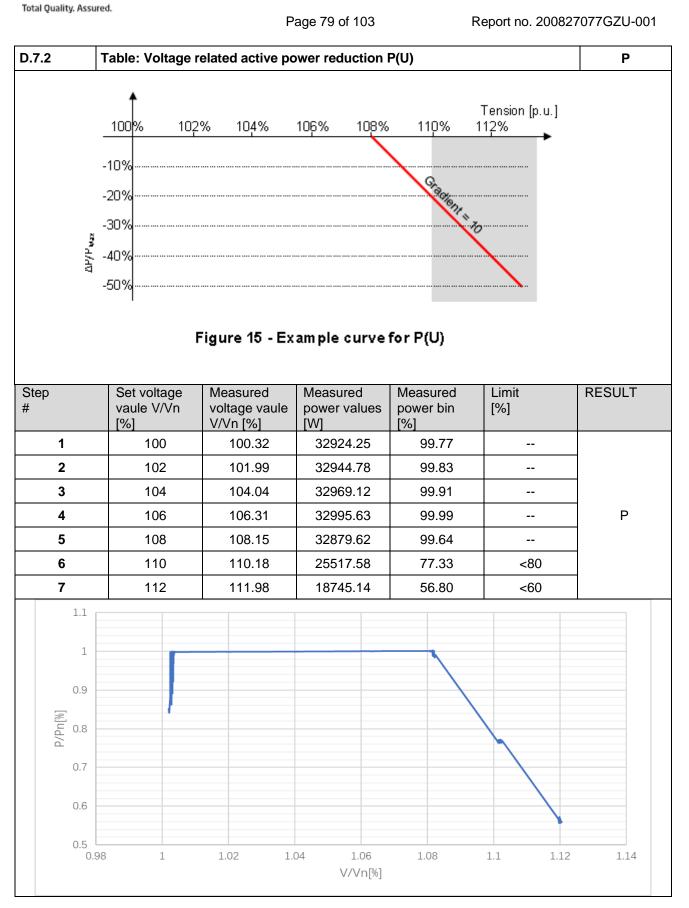
Page 76 of 103

100 %	0.91 Vn	99.10	209.77	8259.11	7992.60	0.81
100 %	0.90 Vn	88.31	206.82	16171.13	15981.90	0.57
100 % →10 %	0.90 Vn	9.47	207.10	15993.09	15981.90	0.03
10 % →≤ 5 %	0.91 Vn	1.82	206.76	281.09	≈0 (< ± 5 % Pn)	0.85

Page 77 of 103

Total Quality. Assured.


Page 78 of 103


Report no. 200827077GZU-001

D.7.1	Table: Q C	ontrol Powe	r related co	ontrol modes	S			Р
P Desired (%Sn)	P measured (%Sn)	Q measured (Var)	Voltage Desired (%Un)	Voltage Measured (%Un)	Power Factor desired (cos φ)	Power Factor measured (cos φ)	∆Q (%S _{Max})	Limit (%S _{Max})
20%	20.12	253.45	<105%	100.08	1.0000	0.9993	0.77	<u>+</u> 2
30%	30.23	279.37	<105%	100.11	1.0000	0.9996	0.85	<u>+</u> 2
40%	40.12	351.78	<105%	100.16	1.0000	0.9996	1.07	<u>+</u> 2
50%	50.18	422.46	<105%	100.21	1.0000	0.9997	1.28	<u>+</u> 2
60%	60.37	499.41	<105%	100.27	1.0000	0.9997	1.51	<u>+</u> 2
60%	60.18	-3948.66	>105%	105.96	0.9800	0.9808	0.22	<u>+</u> 2
70%	70.18	-6613.45	>105%	105.86	0.9600	0.9616	0.38	<u>+</u> 2
80%	80.04	-9348.18	>105%	105.92	0.9400	0.9427	0.71	<u>+</u> 2
90%	89.94	-12311.39	>105%	105.94	0.9200	0.9237	1.03	<u>+2</u>
100%	100.18	-15614.99	>105%	105.98	0.9000	0.9042	1.11	<u>+</u> 2
100%	100.24	543.55	<100%	98.73	1.0000	0.9994	1.65	±2

Remark: Tested at lock-in voltage 1.05 Vn and lock-out voltage Vn.

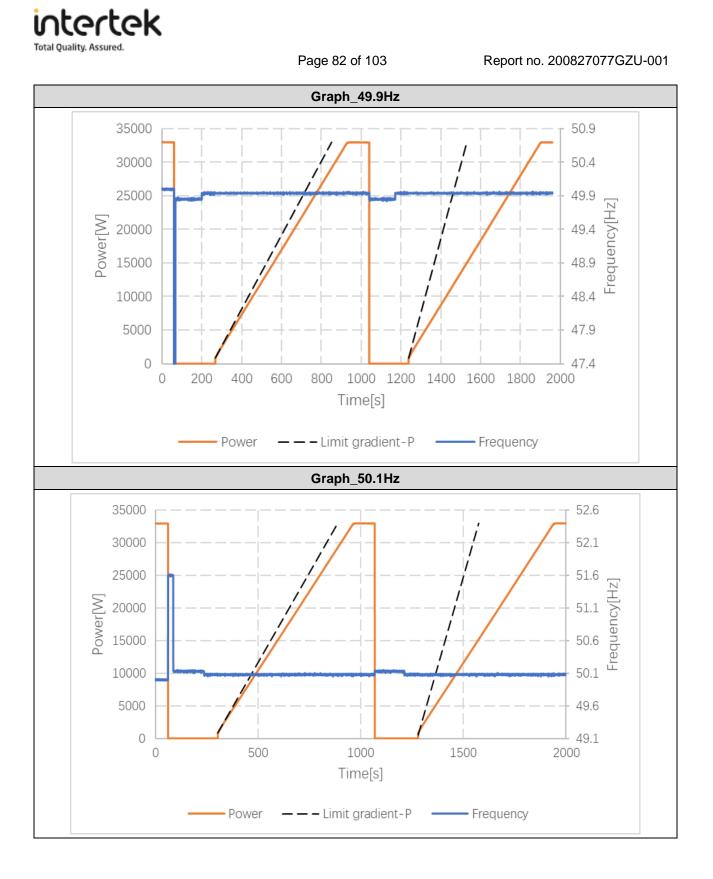
The Lock-in value is adjustable between Vn and 1.1Vn in 0.01V steps, the Lock-out value is adjustable between 0.9Vn and Vn in 0.01V steps

Total Quality. Assured.

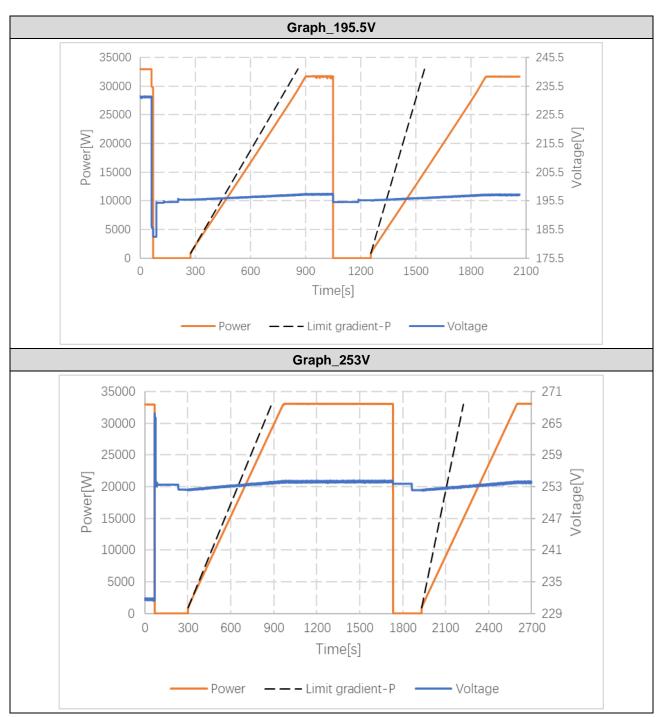
Page 80 of 103

Report no. 200827077GZU-001

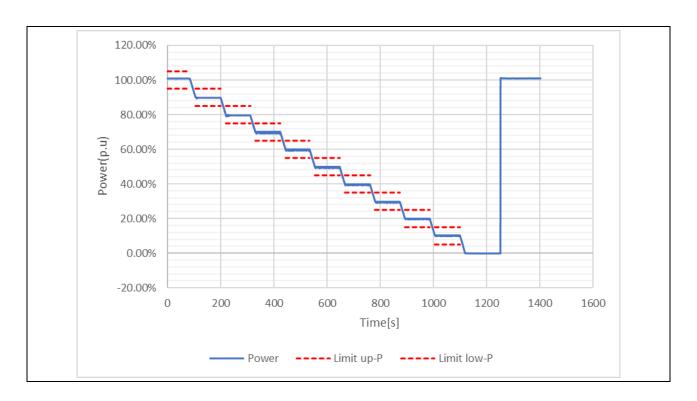
	Table: Connection and r	reconnection		Р			
Parameter		Reconnection after tripping of the interface protection relay	Normal operation starting				
Lower	frequency	49,9 Hz	49,9 Hz				
Upper frequency		50,1 Hz	50,1 Hz				
Lower voltage		If connection to the LV distri- bution network: 85% U _n	If connection to the LV distribution network: 85% Un				
Luvver	voltage	If connection to the HV distri- bution network: 90 % U₀	If connection to the HV dist bution network: 90 % U。				
Linnau		If connection to the LV distri- bution network: 110 % Un	If connection to the LV dis bution network: 110 % Un				
Opper	voltage	If connection to the HV distri- bution network: 110 % U _o	If connection to the HV dis bution network: 110 % U。				
Observation time		60 s	60 s				
Maxim gradier	ium active power increase nt	10 %/min*	20 %/min				


* Power-generating units that have not the ability to apply a certain gradient shall take into account an additional delay.

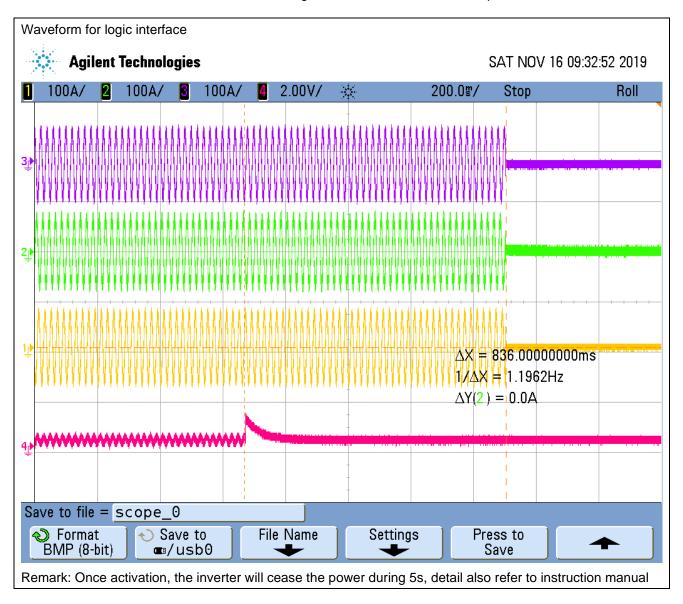
connection	connection allowed	Observation time (s)	Power gradient after connection (%/min)	
<49.9Hz	No			
≥49.9Hz	Yes	68.0	8.78	
>50.1Hz	No			
≤50.1Hz	Yes	67.4	8.80	
<195.5V	No			
≥195.5V	Yes	67.6	8.84	
>253V	No			
≤253V	Yes	68.6	8.76	
	<49.9Hz ≥49.9Hz >50.1Hz ≤50.1Hz <195.5V ≥195.5V >253V	connection allowed <49.9Hz	Connection allowed (s) <49.9Hz	


Page 81 of 103

Test sequence at normal operation starting	connection	connection allowed	Observation time (s)	Power gradient after connection (%/min)				
Step a)	<49.9Hz	No						
Step b)	≥49.9Hz	Yes	67.6	8.77				
Step c)	>50.1Hz	No						
Step d)	≤50.1Hz	Yes	67.2	8.79				
Step e)	<195.5V	No						
Step f)	≥195.5V	Yes	67.6	8.85				
Step g)	>253V	No						
Step h)	≤253V	Yes	69.0	8.76				
Remark: Maximum active power increase gradient 20 %/min.								

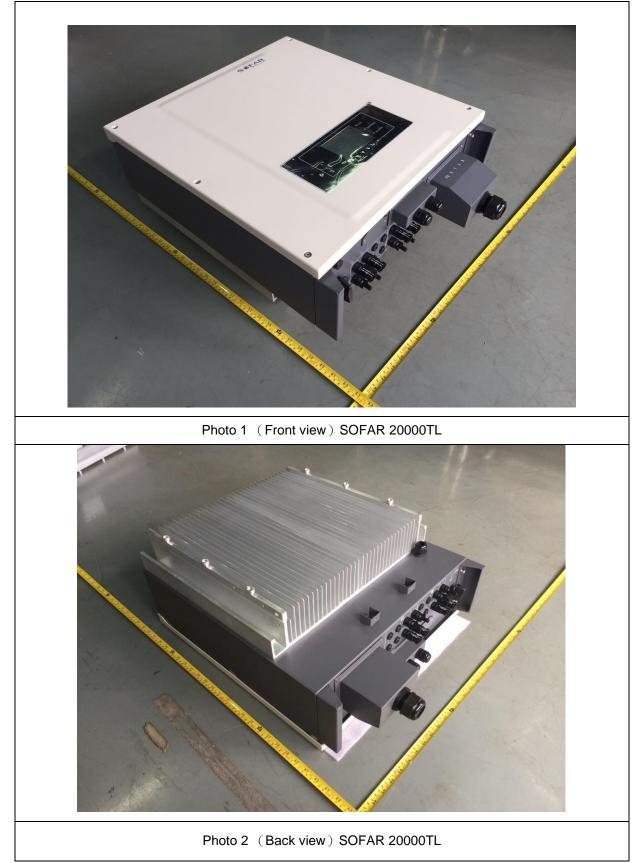


intertek Total Quality. Assured.

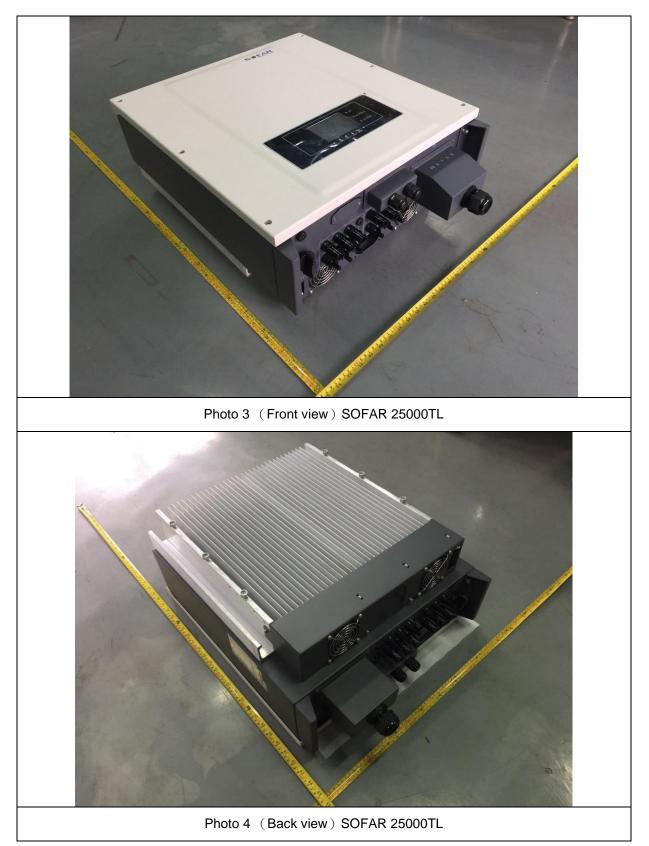

Page 84 of 103

D.9		Table: Ceasing interface)		Ρ						
String	1	U _{DC} =	800 \	/dc	Uac = Un	230 Vac P _{Emax}		P _{Emax}	(KW)	33.0
1 min mean value P/Pn				Pmea	sured (%)	\triangle	Pmeasured	(%)		Limit
		Psetpoint (%)								[%]
		100%		1(88.00		0.88			±5%
		90%		8	9.75		-0.25		±5%	
		80%		79.61		-0.39			±5%	
	70%			70.01		0.01			±5%	
		60%		59.88		-0.12			±5%	
		50%		49.79			-0.21		±5%	
		40%		39.73 -0.27				±5%		
		30%		29.69		-0.31			±5%	
		20%		19.93		-0.07			±5%	
10%				10.27 0.27			±5%			
The pov	The power gradient for increasing and reducing (%P _n /s)								0.50%P _n /s	
Time for	Logic	interface (at inp	ut port) acti	vated						0.836s

Page 85 of 103

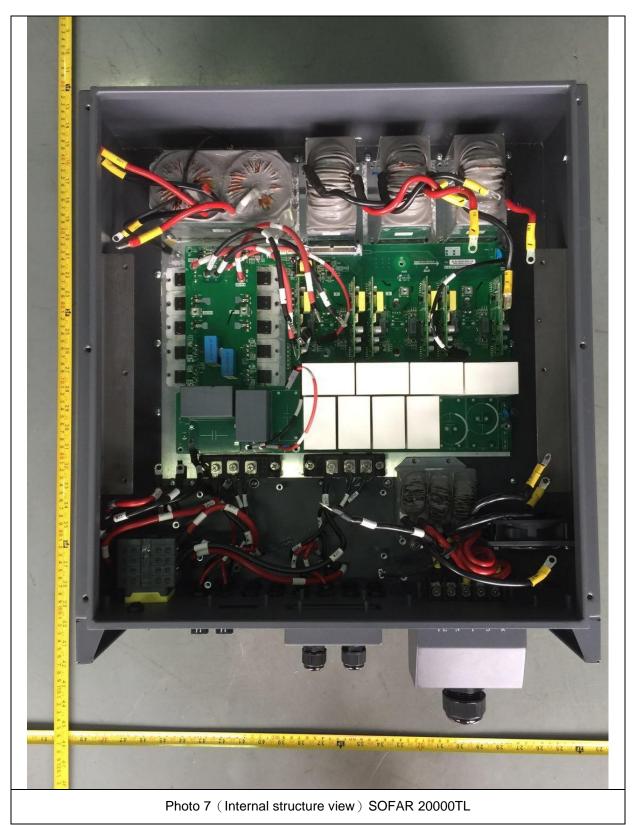


Page 86 of 103


Report no. 200827077GZU-001

Annex 1: Photo document

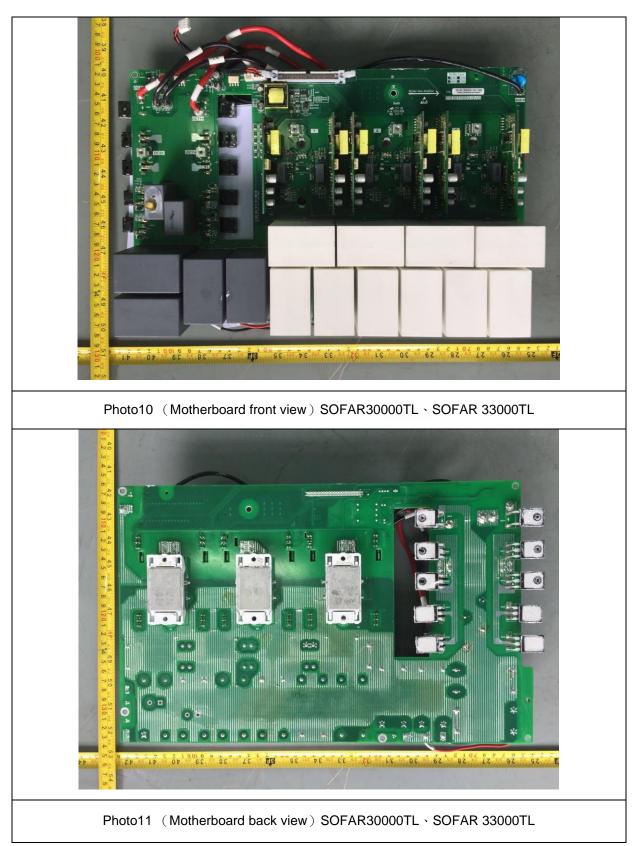
Page 87 of 103



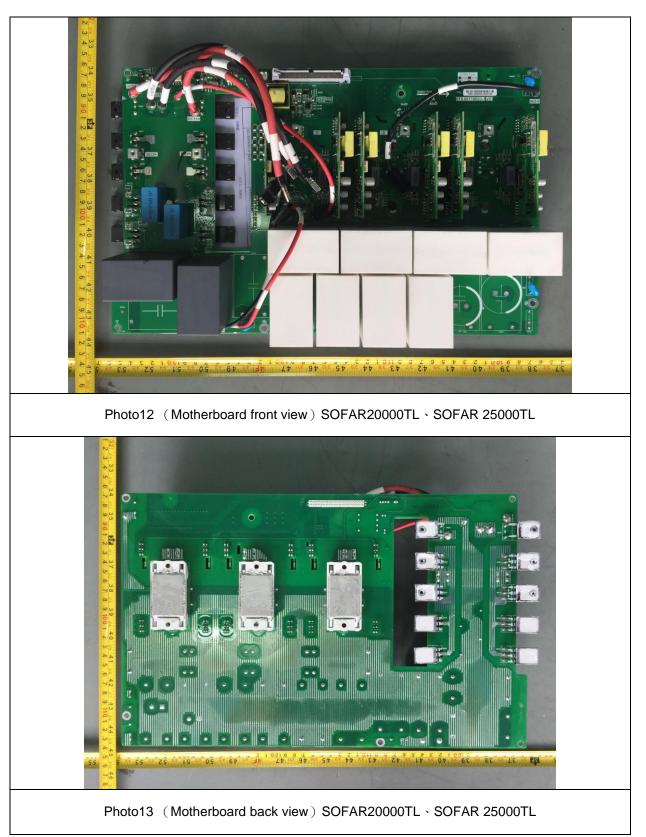
Page 88 of 103

Page 89 of 103

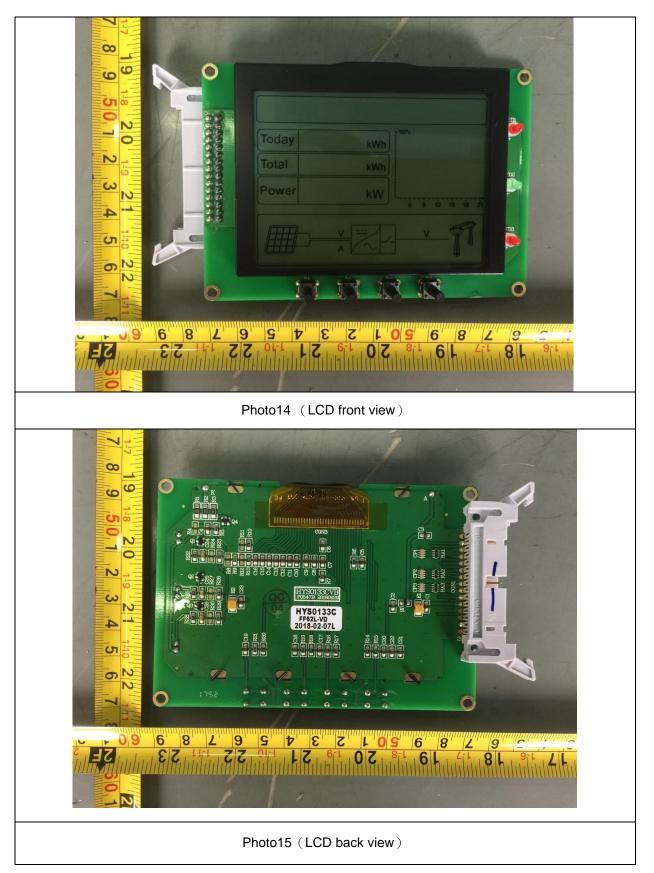
Page 90 of 103



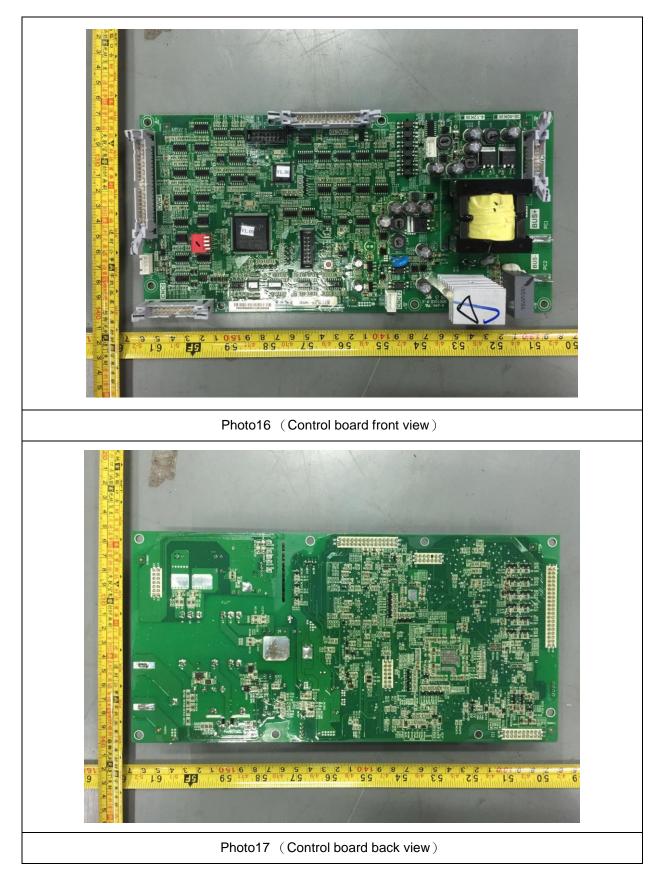
Page 91 of 103



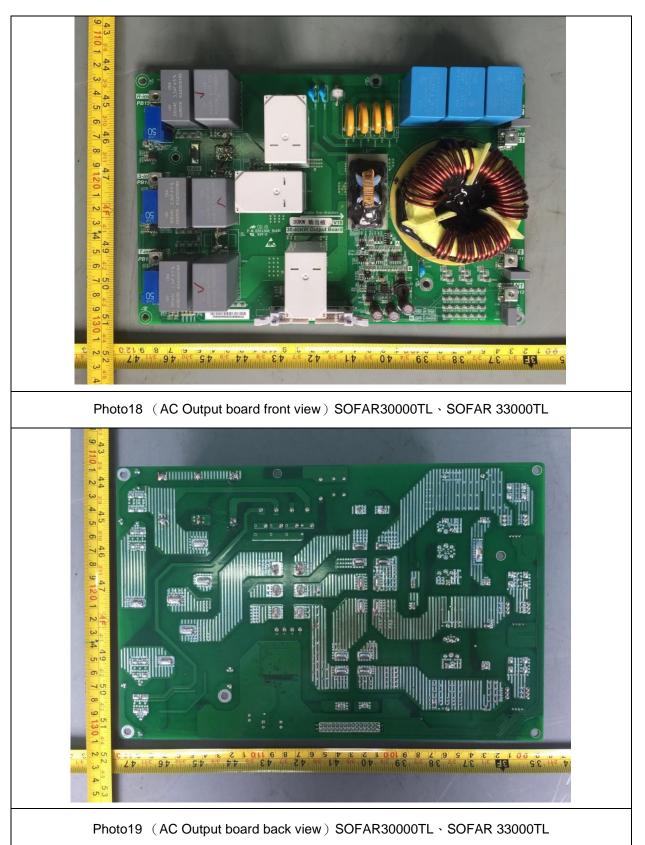
Page 92 of 103



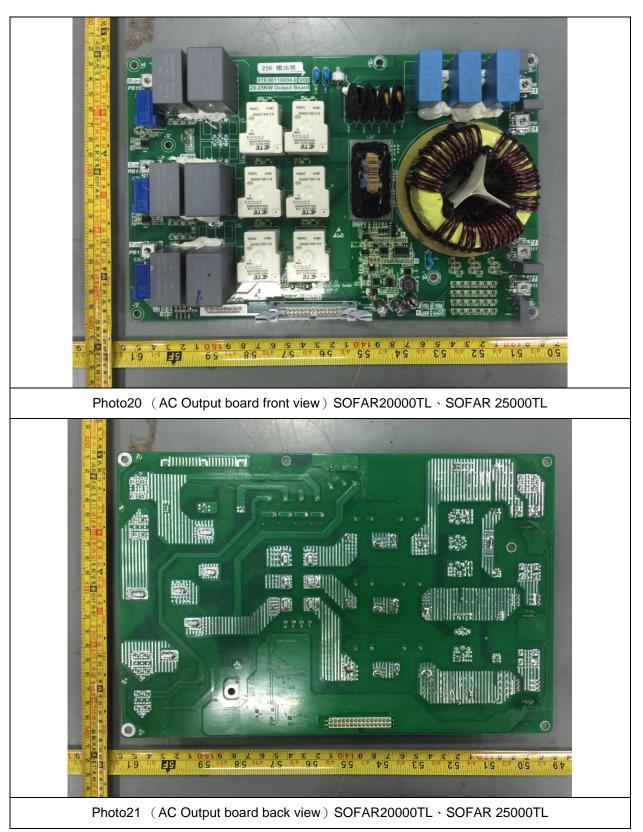
Page 93 of 103



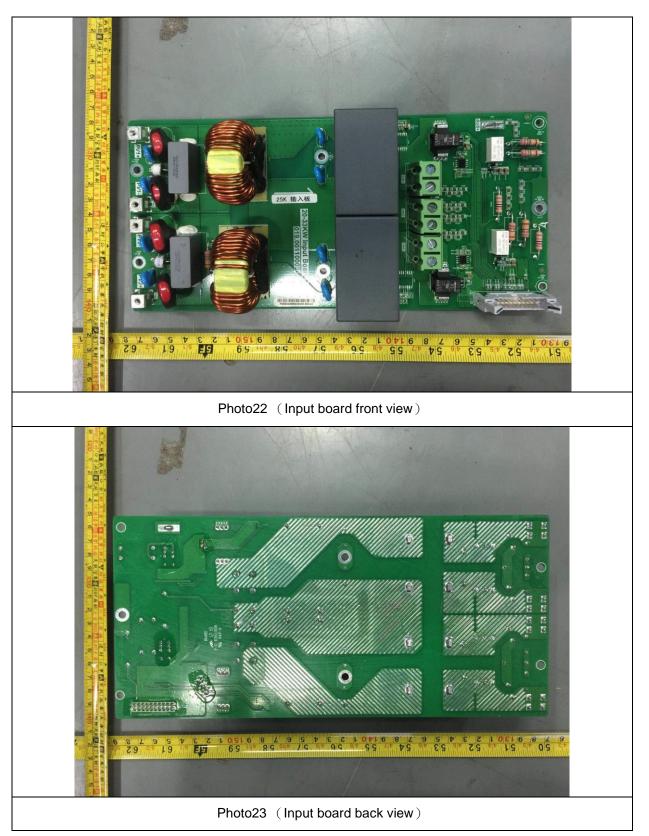
Page 94 of 103



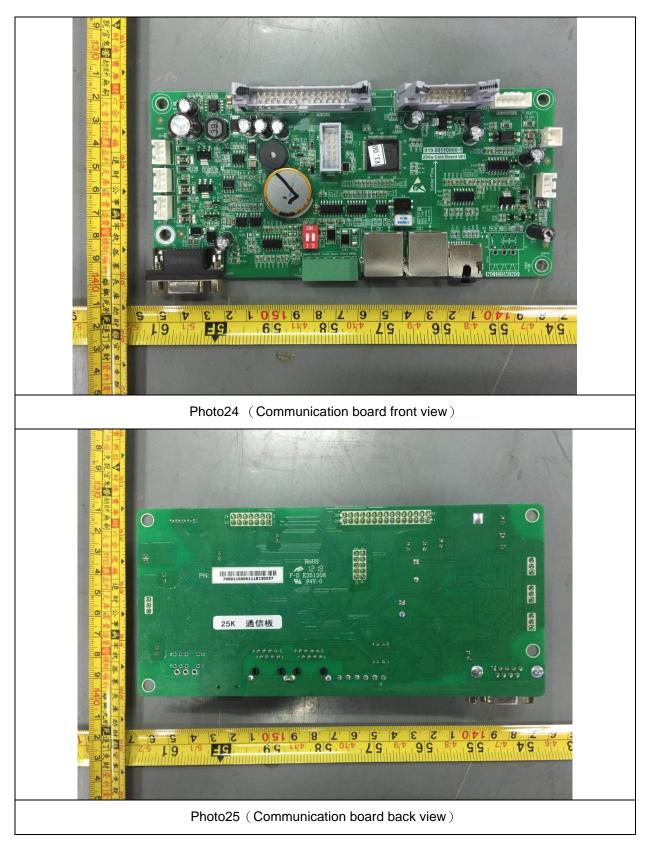
Page 95 of 103



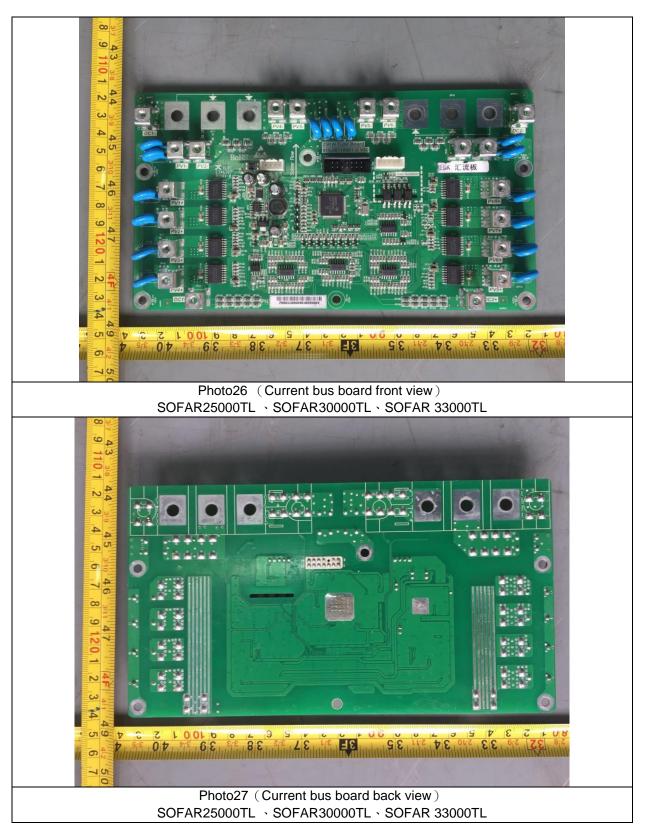
Page 96 of 103



Page 97 of 103

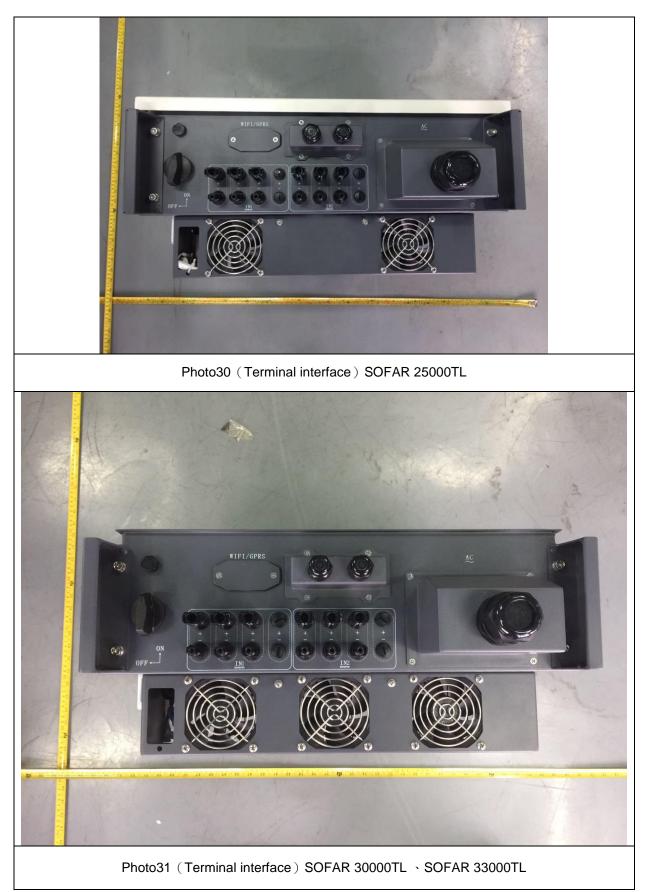


Page 98 of 103

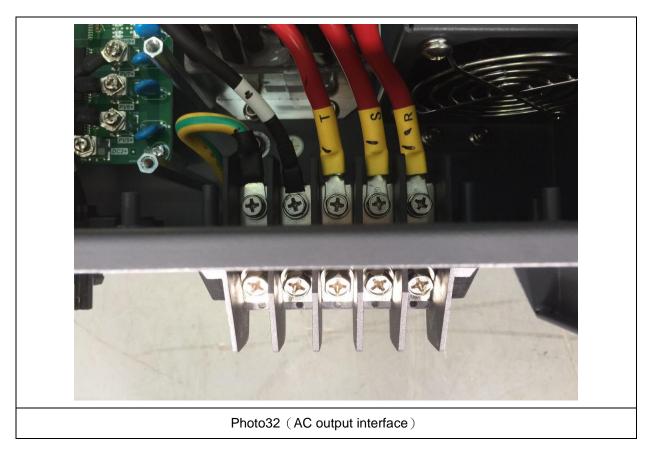


Page 99 of 103

Page 100 of 103



Page 101 of 103


Page 102 of 103

Page 103 of 103

Report no. 200827077GZU-001

(End of Report)