

TEST REPORT IEC 62116

Test procedure of islanding prevention measures for utility-interconnected photovoltaic inverters

Report reference number: PV200917N006-7

Date of issue 2021-01-28

Total number of pages 38

Testing laboratory name Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

Guangdong Province, 523942, People's Republic of China

Accrediation:

Applicant's name.....: Shenzhen SOFARSOLAR Co., Ltd.

Community, XinAn Street, BaoAn District, Shenzhen, China

Test specification

Standard.....: IEC 62116:2014

Test Report Form No. : IEC/EN 62116 VER.2

TRF Originator Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

Master TRF: Dated 2020-03-11

Test item description Hybrid Inverter

Model / Type HYD 6000-EP, HYD 5500-EP, HYD 5000-EP, HYD 4600-EP,

HYD 4000-EP, HYD 3680-EP, HYD 3000-EP

This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/atal is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Tel: +86 769 8998 2098

8 TRF No. IEC/EN 62116 VER.2

Tel: +86 769 8998 2098

Fax: +86 769 8599 1080

TRF No. IEC/EN 62116 VER.2

Email: customerservice.dg@bureauveritas.com

Ratings::	HYD 3000-EP	HYD 3680-EP	HYD 4000-EP	
Full load MPP DC voltage range [V].:	160-520V 180-520V		200-520V	
Input DC voltage range[V]:	90-600V			
Input DC current [A]	Max. 13A/13A			
Output AC voltage [V]	L/N/	PE, 220 / 230Vac, 50/6	60Hz	
Output AC current [A]	15,0	16,0	20,0	
Output power [W]	3000	3680	4000	
Max. output power [VA]:	3300	3680	4400	
Output DC voltage range [V]: [Battery charge]:		42-58V		
Input/Output DC current [A]: [Battery charge/discharge]:	Max. 75A	Max. 80A	Max. 85A	
Charge and discharge power[W]:	Max. 3750	Max. 4000	Max. 4250	
Output AC voltage [V]:	L/N/	PE, 220 / 230Vac, 50/6	60Hz	
Max. Input/Output AC current [A]: [Battery charge/discharge mode]:	13,6	13,6 16,0		
Max. Input/Output AC power [VA]: [Battery charge/discharge mode]:	3000 3680		4000	
Detings				
Ratings	HYD 4600-EP 230-520V	HYD 5000-EP 250-520V	HYD 5500-EP 250-520V	
Full load MPP DC voltage range [V].: Input DC voltage range[V]	230-320 V	90-600V	250-520 V	
Input DC voitage range[v]		Max. 13A/13A		
Output AC voltage [V]	1 /N/	PE, 220 / 230Vac, 50/6	SOH ₇	
Output AC current [A]:	20,9	21,7	25,0	
Output power [W]:	4600			
Max. output power [VA]:	4600 5000		5000 5500	
Output DC voltage range [V]	42-58V			
Input/Output DC current [A]: [Battery charge/discharge]:	Max. 100A			
Charge and discharge power[W]:	Max. 5000			
Output AC voltage [V]	L/N/PE, 220 / 230Vac, 50/60Hz			
Max. Input/Output AC current [A]: [Battery charge/discharge mode]:	20,9	22,7	22,7	
Max. Input/Output AC power [VA]: [Battery charge/discharge mode]:	4600 5000		5000	

Ratings:	HYD 6000-EP
Full load MPP DC voltage range [V].:	300-520V
Input DC voltage range[V]:	90-600V
Input DC current [A]	Max. 13A/13A
Output AC voltage [V]:	L/N/PE, 220 / 230Vac, 50/60Hz
Output AC current [A]:	27,3
Output power [W]	6000
Max. output power [VA]:	6000
Output DC voltage range [V]:	42-58V
[Battery charge]:	42-30 V
Input/Output DC current [A]:	Max. 100A
[Battery charge/discharge]:	Max. 1007
Charge and discharge power[W]:	Max. 5000
Output AC voltage [V]	L/N/PE, 220 / 230Vac, 50/60Hz
Max. Input/Output AC current [A]:	22.7
[Battery charge/discharge mode]:	22,7
Max. Input/Output AC power [VA]:	5000
[Battery charge/discharge mode]:	3000

Testing Location Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

Guangdong Province, 523942, People's Republic of China

Tested by

(name and signature): Lukes Lin

Approved by

(name and signature): James Huang

Manufacturer's name: Shenzhen SOFARSOLAR Co., Ltd.

Community, XinAn Street, BaoAn District, Shenzhen, China

Factory's name 1...... Dongguan SOFAR SOLAR Co.,Ltd

Village, Fenggang Town, Dongguan City

Document History				
Date	Internal reference	Modification / Change / Status	Revision	
2021-01-28	Lukes Lin	Initial report was written	0	
Supplementary information:				

Test items particulars

Equipment mobility.....: Permanent connection

Operating condition: Continuous

Class of equipment: Class I

Protection against ingress of water..: IP65 according to EN 60529

Mass of equipment [kg]...... Approx. 21,5 kg

Test case verdicts

Test case does not apply

to the test object.....: N/A

Test item does meet

the requirement: P(ass)

Test item does not meet

the requirement F(ail)

Testing

Date of receipt of test item: 2020-09-17

Date(s) of performance of test: 2020-09-17 to 2020-12-28

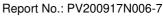
General remarks:

The test result presented in this report relate only to the object(s) tested.

This report must not be reproduced, in part or in full, without the written approval of the issuing testing laboratory.

"(see Annex #)" refers to additional information appended to the report.

"(see appended table)" refers to a table appended to the report.


Throughout this report a comma is used as the decimal separator.

This Test Report consists of the following documents:

- 1. Test Results
- 2. Annex No. 1 Pictures of the unit
- 3. Annex No. 2 Test equipment list

Copy of marking plates:

Hybrid Inverter

Model No:	HYD 3000-EP
Max.DC Input Voltage	600V
Operating MPPT Voltage Range	90V~580V
MAX.PV Isc	2x18A
Battery TypeL	<u>.ead-acid,Lithium-ion</u>
Battery Voltage Range	42-58V
Max.Charging Current	75A
Max.Discharging Current	75A
Max.Charging&Discharging Power	<u>3750W</u>
Nominal Grid Voltage	220/230Vac
Nominal Output Voltage	230Vac
Max.Output Current	15.0A
Nominal Grid Frequency	50/60Hz
Power Factor	1(adjustable+/-0.8)
Nominal Output Power	3000W
Backup Rated Current	13.6A
Backup Rated Apparent Power	3000VA
Ingress Protection	IP 65
Operating Temperature Range	-30-+60°C
Protective Class	Class I
Manufacturer: Shenzhen SOFA Address: 401, Building 4, AnTongD District 68, XingDong Community X	a Industrial Park,

Hybrid Inverter

Model No:	HYD 3680-EP		
Max.DC Input Voltage	600V		
Operating MPPT Voltage Range	90V~580V		
MAX.PV Isc	2x18A		
Battery Type	Lead-acid,Lithium-ion		
Battery Voltage Range	42-58V		
Max.Charging Current	<u>A08</u>		
Max.Discharging Current	A08		
Max.Charging&Discharging Powe	er 40 <u>00W</u>		
Nominal Grid Voltage	220/230Vac		
Nominal Output Voltage	23 <u>0Vac</u>		
Max.Output Current	16.0A		
Nominal Grid Frequency	<u>50/60Hz</u>		
Power Factor	1(adjustable+/-0.8)		
Nominal Output Power	<u>3680W</u>		
Backup Rated Current	16.0A		
Backup Rated Apparent Power	3680VA		
Ingress Protection	IP 65		
Operating Temperature Range	<u>-30-+60</u> °C		
Protective Class	Class I		
Manufacturer: Shenzhen SOF Address: 401, Building 4, AnTong District 68, XingDong Community BaoAn District, Shenzhen, China	Da Industrial Park, XinAn Street,		
DauAii District, Shelizhell, Chilla	/m/		

VDE0126-1-1,VDE-AR-N4105 G98,AS4777,UTE C15-712-1

Hybrid Inverter

Model No:	HYD 4000-EP
Max.DC Input Voltage	600V
Operating MPPT Voltage Range	90V~580V
MAX.PV Isc	2x18A
Battery Type	Lead-acid,Lithium-ion
Battery Voltage Range	42-58V
Max.Charging Current	85A
Max.Discharging Current	85A
Max.Charging&Discharging Power	er <u>4250W</u>
Nominal Grid Voltage	220/230Vac
Nominal Output Voltage	230Vac
Max.Output Current	20.0A
Nominal Grid Frequency	5 <u>0</u> / <u>6</u> 0Hz
Power Factor	1(adjustable+/-0.8)
Nominal Output Power	4000W
Backup Rated Current	18.2A
Backup Rated Apparent Power	4000VA
Ingress Protection	IP 65
Operating Temperature Range	<u>-30-+60</u> °C
Protective Class	Class I
Manufacturer: Shenzhen SOF Address: 401, Building 4, AnTong	

District 68, XingDong Community, XinAn Street,

BaoAn District, Shenzhen, China VDE0126-1-1, VDE-AR-N4105

Hybrid	Hr	ive	rte	r

Model No:	HYD 4600-EP
Max.DC Input Voltage	600V
Operating MPPT Voltage Range	90V~580V
MAX.PV Isc	2x18A
Battery Type	ead-acid,Lithium-ion
Battery Voltage Range	42-58V
Max.Charging Current	<u>100A</u>
Max.Discharging Current	100A
Max.Charging&Discharging Power	<u>5000W</u>
Nominal Grid Voltage	220/230Vac
Nominal Output Voltage	230Vac
Max.Output Current	20.9A
Nominal Grid Frequency	50/60Hz
Power Factor	1(adjustable+/-0.8)
Nominal Output Power	4600W
Backup Rated Current	20.9A
Backup Rated Apparent Power	4600VA
Ingress Protection	IP 65
Operating Temperature Range	<u>-30-+60</u> °C
Protective Class	Class I
Manufacturan Chanaban COTAL	P41 -0 04 1000

Manufacturer: Shenzhen SOFARSOLAR Co., Ltd. Address: 401, Building 4, AnTong Da Industrial Park, District 68, XingDong Community, XinAn Street,

BaoAn District, Shenzhen, China VDE0126-1-1, VDE-AR-N4105 G98,AS4777,UTE C15-712-1

Tel: +86 769 8998 2098 Fax: +86 769 8599 1080 Email: customerservice.dg@bureauveritas.com TRF No. IEC/EN 62116 VER.2

Copy of marking plates:

Hybrid Inverter

Model No:	HYD 5000-EP
Max.DC Input Voltage	600V
Operating MPPT Voltage Range	90V~580V
MAX.PV Isc	2x18A
Battery TypeL	<u>.ead-acid,Lithium-ion</u>
Battery Voltage Range	42-58V
Max.Charging Current	<u>100A</u>
Max.Discharging Current	100A
Max.Charging&Discharging Power	<u>5000W</u>
Nominal Grid Voltage	220/230Vac
Nominal Output Voltage	230Vac
Max.Output Current	21.7A
Nominal Grid Frequency	5 <u>0/60Hz</u>
Power Factor	1(adjustable+/-0.8)
Nominal Output Power	<u>5000W</u>
Backup Rated Current	22.7A
Backup Rated Apparent Power	5000VA
Ingress Protection	IP 65
Operating Temperature Range	<u>-30-+60°</u> C
Protective Class	Class I
Manufacturer: Shanzhan SOEA	DSOLAD Co. Ltd

Manufacturer: Shenzhen SOFARSOLAR Co., Ltd. Address: 401, Building 4, AnTong Da Industrial Park,

District 68, XingDong Community, XinAn Street, BaoAn District, Shenzhen, China VDE0126-1-1,VDE-AR-N4105 G98,AS4777,UTE C15-712-1

Hybrid Inverter

Model No:	HYD 5500-EP
Max.DC Input Voltage	600V
Operating MPPT Voltage Range	90V~580V
MAX.PV Isc	2x18A
Battery Type	Lead-acid,Lithium-ion
Battery Voltage Range	42-58V
Max.Charging Current	<u>100A</u>
Max.Discharging Current	100A
Max.Charging&Discharging Powe	er <u>5000W</u>
Nominal Grid Voltage	220/230Vac
Nominal Output Voltage	230Vac
Max.Output Current	25.0A
Nominal Grid Frequency	50/60Hz
Power Factor	1(adjustable+/-0.8)
Nominal Output Power	<u>5000</u> W
Backup Rated Current	22.7A
Backup Rated Apparent Power	5000VA
Ingress Protection	IP 65
Operating Temperature Range	<u>-30-+60°</u> C
Protective Class	Class I
Manufacturer: Shenzhen SOF Address: 401, Building 4, AnTong	

District 68, XingDong Community, XinAn Street, BaoAn District, Shenzhen, China

VDE0126-1-1,VDE-AR-N4105 G98,AS4777,UTE C15-712-1

Hybrid Inverter

Model No:	HYD 6000-EP
Max.DC Input Voltage	600V
Operating MPPT Voltage Range	90V~580V
MAX.PV Isc	2x18A
Battery TypeL	<u>ead-acid,Lithium-ion</u>
Battery Voltage Range	42-58V
Max.Charging Current	<u>100A</u>
Max.Discharging Current	<u>100A</u>
Max.Charging&Discharging Power	<u>5000W</u>
Nominal Grid Voltage	220/230Vac
	<u>2</u> 3 <u>0Vac</u>
	27.3A
Nominal Grid Frequency	<u>50/60Hz</u>
Power Factor	1(adjustable+/-0.8)
	<u>6000W</u>
	22.7A
	<u>5000VA</u>
	IP 65
Operating Temperature Range	<u>-30-+60°C</u>
Protective Class	Class I
Manufacturer: Shenzhen SOFAI Address: 401, Building 4, AnTongDa District 68, XingDong Community,Xi BaoAn District, Shenzhen, China	a Industrial Park,

C E AO. & A

VDE0126-1-1,VDE-AR-N4105 G98, AS4777, UTE C15-712-1

> Tel: +86 769 8998 2098 Fax: +86 769 8599 1080 Email: customerservice.dg@bureauveritas.com TRF No. IEC/EN 62116 VER.2

General product information:

The Hybrid Inverter converts DC voltage into AC voltage.

The Hybrid Inverter is a single phase type inverter and it can be used in parallel.

The DC input of Hybrid Inverter can be supplied from PV array and batteries.

The charging current to batteries from PV array and power grid, battery management unit is integrated in External Energy storage.

The input and output are protected by Varistors to Earth. The unit is providing EMC filtering at the output toward mains. The unit does not provide galvanic separation from input to output (transformerless). The output is switched off redundant by the high power switching bridge and a two relays. This assures that the opening of the output circuit will also operate in case of one error.

Description of the electrical circuit:

The internal control is redundant built. It consists of Master DSP (U4) and Slave DSP (U43).

The Master DSP (U4) control the relays by switching signals; measures the Battery voltage, Battery current, PV voltage, PV current, Bus voltage, grid voltage, frequency, AC current with injected DC and the array insulation resistance to ground. In addition it tests the current sensors and the RCMU circuit before each start up.

The Slave DSP (U43) is measures the grid voltage, grid frequency, DCI and residual current, also can switch off the relays independently, and communicate with the Master DSP (U4) each other.

The current is measured by a current sensor. The AC current signal and the injected DC current signal are sent to the Master DSP (U4). The Master DSP (U4) tests and calibrates before each start up all current sensors.

The unit provides two relays in series in all output conductors. When single fault applied to one relay, alarm an error code in display panel, another redundant relay provides basic insulation maintained between the PV array and the mains. All the relays are tested before each start up.

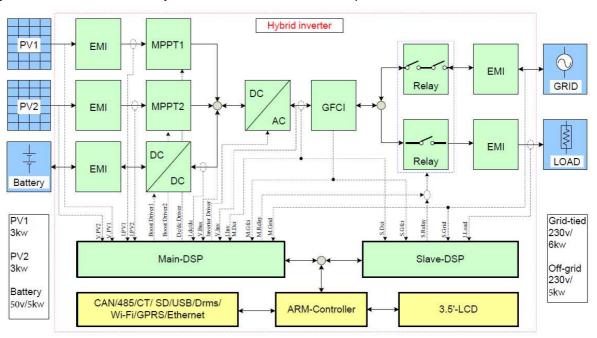


Figure 1 - Block diagram

Tel: +86 769 8998 2098

Fax: +86 769 8599 1080

TRF No. IEC/EN 62116 VER.2

Email: customerservice.dg@bureauveritas.com

Model difference:

The models HYD 6000-EP, HYD 5500-EP, HYD 5000-EP, HYD 4600-EP, HYD 4000-EP, HYD 3680-EP and HYD 3000-EP are use the identical hardware platform, control unit, control system and software except the output power derated by software and in following table descripts for different.

43	HYD 6000- EP₽	HYD 5500- EP₽	HYD 5000- EP₽	HYD 4600- EP₽	HYD 4000- EP₽	HYD 3680- EP₽	HYD 3000- EP₽
Resistor ↓ R332, R334, R336₽	(0Ω, NC, 0Ω)↔			(NC, 0Ω, NC) ^ω			
BUS capacitors₽	8 pcs₽			6 pcs₽			
Inductor ₽	0,75mH <i>₽</i>			1.035mH₽			
Sampling resistor of output current (R123,R132)	(1,5kΩ, 1,5kΩ)↔			(49	99Ω, 499Ω	1)₽	

The product was tested on:

Hardware version: V001 Software version: V02000

All tests were performed on HYD 6000-EP and HYD 3000-EP are valid for the HYD 5500-EP, HYD 5000-EP, HYD 4600-EP, HYD 4000-EP and HYD 3680-EP since it's use the identical hardware and software construction except output power derated by software.

	IEC 62116							
Clause	Requirement + Test	Result - Remark	Verdict					
4	Testing circuit		P					
_	The testing circuit shown in Figure 1 is employed.	Considered.	P					
	Similar circuits are used for three-phase output.	00110100100.	P					
	Parameters to be measured are shown in Table 1	Considered.	P					
	and Figure 1. Parameters to be recorded in the test							
	report are discussed in Clause 7.							
5	Testing equipment		Р					
5.1	Measuring instruments							
<u> </u>	The waveform measurement/capture device is able		P P					
	to record the waveform from the beginning of the		'					
	islanding test until the EUT ceases to energize the							
	island.							
	For multi-phase EUT, all phases are monitored.	Three phases ara monitored.	Р					
	A waveform monitor designed to detect and	Oscilloscope is used.	P					
	calculate the run-on time may be used.							
	For multi-phase EUT, the test and measurement Considered.							
	equipment is recorded each phase current and each		Р					
	phase-to-neutral or phase-to-phase voltage, as							
	appropriate, to determine fundamental frequency							
	active and reactive power flow over the duration of							
	the test.							
	A sampling rate of 10 kHz or higher is	Considered.	Р					
	recommended. The minimum measurement							
	accuracy is 1 % or less of rated EUT nominal output							
	voltage and 1 % or less of rated EUT output current							
	Current, active power, and reactive power	Considered.	Р					
	measurements through switch S1 used to determine							
	the circuit balance conditions report the fundamental							
	(50 Hz or 60 Hz) component.							
5.2	DC power source		P					
5.2.1	General		Р					
		PV array simulator is used.	Р					
	used. If the EUT can operate in utility-interconnected							
	mode from a storage battery, a DC power source							
	may be used in lieu of a battery as long as the DC							
	power source is not the limiting device as far as the							
	maximum EUT input current is concerned.							
	The DC power source provides voltage and current	Considered.	P					
	necessary to meet the testing requirements							
	described in Clause 6.							
5.2.2	PV array simulator		P					
	The tests are conducted at the input voltage defined	Considered.	Р					
	in Table 2 below, and the current is limited to 1,5							
	times the rated photovoltaic input current, except							
	when specified otherwise by the test requirements.	 						
	A PV array simulator is recommended, however,	PV array simulator is used.	P					
	any type of power source may be used if it does not							
	influence the test results.							

Tel: +86 769 8998 2098 Fax: +86 769 8599 1080 Email: <u>customerservice.dg@bureauveritas.com</u>

TRF No. IEC/EN 62116 VER.2

Tel: +86 769 8998 2098

Fax: +86 769 8599 1080

TRF No. IEC/EN 62116 VER.2

Email: customerservice.dg@bureauveritas.com

		IEC 62116		
Clause	Requirement + Test		Result - Remark	Verdict

5.2.3	Current and voltage limited with series resistance	DC power supply	PV array simulator is used.	N/A				
	A DC power source used as t	the EUT input source is		N/A				
	capable of EUT maximum inp							
	achieve EUT maximum outpu							
	and maximum EUT input ope							
	The power source provides a			N/A				
	voltage limit, set to provide th			14//				
	current and open circuit volta							
	the series and shunt resistant							
	A series resistance (and, opti			NI/A				
				N/A				
	resistance) is selected to prov	nde a iiii iactor within						
	the range:							
	Output power: Sufficient to provide maximum EUT							
	output power and other levels specified by test							
	conditions of table 5.							
	Response speed: The respor							
	to a step in output voltage, due to a 5% load							
	change, results in a settling o							
	within 10% of its final value in less than 1ms.							
	Stability: Excluding the variati							
	EUT MPPT, simulator output							
	within 2 % of specified power							
	of the test: from the point whe							
	achieved until the island cond							
	allowable run-on time is exce							
	Power factor: 0.25 to 0.8	eueu.						
5.2.4	PV array		PV array simulator is used.	N/A				
	A PV array used as the EUT	input source is capable		N/A				
	of EUT maximum input powe							
	maximum EUT input operatin							
	Testing is limited to times who			N/A				
	by no more than 2 % over the			13/73				
	measured by a silicon-type py							
	reference device. It may be r							
		array configuration to achieve the input voltage and						
E 0	power levels prescribed in 6.	l		<u> </u>				
5.3	AC power source		0	P				
	The utility grid or other AC po		Considered.	P				
	used as long as it meets the							
	Table 4.							
	Items	Conditions						
		al ±2,0 %						
	Voltage THD < 2,5							
		al ±0,1 Hz						
	Phase angle distance ¹⁾ 120 °± 1,5 ° 11 Three-phase case only							
								
5.4	AC loads			P				

	IEC 62116		
Clause	Requirement + Test	Result - Remark	Verdict
	On the AC side of the EUT, variable resistance, capacitance, and inductance are connected in parallel as loads between the EUT and the AC power source. Other sources of load, such as electronic loads, may be used if it can be shown that the source does not cause results that are different than would be obtained with passive resistors, inductors, and capacitors.	Considered.	P
	All AC loads are rated for and adjustable to all test conditions. The equations for Qf are based upon an ideal parallel RLC circuit. For this reason, non-inductive resistors, low loss (high Qf) inductors, and capacitors with low effective series resistance and effective series inductance are utilized in the test circuit. Iron core inductors, if used, are not exceed a current THD of 2 % when operated at nominal voltage. Load components are conservatively rated for the voltage and power levels expected. Resistor power ratings are chosen so as to minimize thermally-induced drift in esistance values during the course of the test.		P
	Active and reactive power is calculated (using the measurements provided in Table 1) in each of the R, L and C legs of the load so that these parasitic parameters (and parasitics introduced by variacs or autotransformers) are properly accounted for when calculating Qf.	Considered.	P
6	Test for single or multi-phase inverter		Р
6.1	Test procedure	(see appended table)	P
	The test uses an RLC load, resonant at the EUT nominal frequency (50 Hz or 60 Hz) and matched to the EUT output power.		Р
	For multi-phase EUT, the load is balanced across all phases and the switch S1 as in Figure 1 opens all phases	The switch could open all phases.	Р
	This test is performed with the EUT conditions as in Table 5, where power and voltage values are given as a percent of EUT full output rating.		Р
	a)Determine EUT test output power		Р
	b) .Adjusting the DC input source		Р
	c) .Turn off the EUT and open S1		P
	d) .Adjust the RLC circuit to have Qf = 1.0 ±0.05		P
	e)Connect the RLC load configured in step d) to the EUT by closing S2		P
	f)Open the utility-disconnect switch S1 to initiate the test, Run-on time is recorded.		Р
	g)For test condition A, adjust the real load and only one of the reactive load components to each of the load imbalance conditions shown in the shaded portion of table 6. If any of the recorded run-on times are longer than the one recorded for the rated balance condition, then the non-shaded parameter combinations also require testing.		P

	IEC 62116		
Clause	Requirement + Test	Result - Remark	Verdict
	h) For test condition B and C, adjust the only one reactive load components by approximately 1,0% per test, within a total range of 95% to 105% of the operating point. If run-on times are still increasing at the 95% or 105% points, additional 1% increments have to be taken until run-on times begin		P
	decreasing.		
6.2	Pass/fail criteria		Р
	An EUT is considered to comply with the requirements for islanding protection when each case of recorded run-on time is less than 2 s or meets the requirements of local codes.		Р
7	Documentation		Р
	At a minimum, the following information is recorded and maintained in the test report.		Р
	a) Specifications of EUT. Table 8 provides an example of the type of information that is provided.		Р
	b) Measurement results. Table 9 provides an example of the type of information that is provided. Actual measured values is to be recorded.		Р
	c) Block diagram of test circuit.		Р
	d) Specifications of the test and measurement equipment. Table 10 provides an example of the type of information that is provided.		Р
	e) Any test configuration or procedure details such as methods of achieving specified load and EUT output conditions.		Р
	f) Any additional information required by the testing laboratory's accreditation.		Р
	g) Specify the evaluation criterion from clause 6.2 that was utilized to determine if the product passed or failed the test.		Р
Annex A	Islanding as it applies to PV systems(Informative)		
A.1	General		
A.2	Impact of distortion on islanding		
Annex B	Test for independent islanding detection device (relay	y)(Informative)	
B.1	Introduction		
B.2	Testing circuit		
B.3	Testing equipment		
B.4	Testing procedure		
B.5	Documentation		

Fax: +86 769 8599 1080 Email: customerservice.dg@bureauveritas.com

TRF No. IEC/EN 62116 VER.2

Tel: +86 769 8998 2098

	IEC 62116		
Clause	Requirement + Test	Result - Remark	Verdict

Test overview:						
	IEC 62116:2014					
Clause	Test	Result				
	Type test:					
6.1	Islanding protection according table 6 - Load imbalance (real, reactive load) for test condition A (EUT ouput = 100%)	Р				
6.1	Load imbalance (reactive load) for test condition B (EUT output = 50 % – 66 %)	Р				
6.1	Load imbalance (reactive load) for test condition C (EUT output = 25 % – 33 %)	Р				

IEC 62116					
Clause	Requirement + Test	Result - Remark	Verdict		

6.1 Islanding protection

Test circuit and parameters

Parameter	Symbol	Units
EUT DC Input		
DC voltage	V _{DC}	V
DC Current	I _{DC}	Α
DC Power	P _{DC}	W
EUT AC ouput		
AC voltage	V_{EUT}	V
AC current	lеит	Α
Real power	P _{EUT}	W
Reactive power	Q_{EUT}	VAr
Test Load		
Resistive load current	I _R	Α
Inductive load current	IL	Α
Capacitive load current	Ic	Α
AC (utility) power source		
Utility real power	P _{AC}	W
Utility reactive power	Qac	VAr
Utility current	IAC	Α

Block diagram test circuit IEC 62116:2008

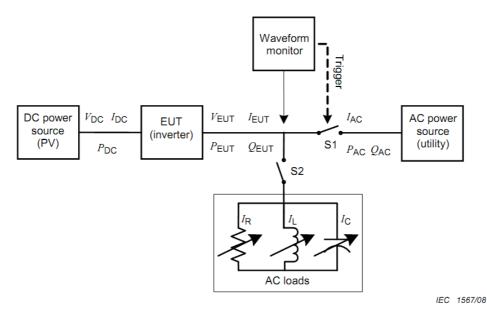


Figure 1 – Test circuit for islanding detection function in a power conditioner (inverter)

		IEC 62116		
Clause	Requirement + Test		Result - Remark	Verdict

	6.1 Islanding protection according table 6 - Load imbalance (real, reactive load) for test condition A (EUT output = 100%)								P			
HYD	6000-EP at	230Va.c. / 5	0Hz									
	Test conditions Frequency: $50+/-0,1Hz$ $U_N=230+/-3Vac$ Distortion factor of chokes < 2% Quality = 1											
[[Disconnectio	n limit					2s					
No	P _{EUT} 1) [% of EUT rating]	Reactive load [% of Q _L in 6.1.d) 1]	P _{AC} ²⁾ [% of nominal]	$[\% \text{ of } Q_{AC}^{(3)} I_{AC}^{(4)} [kW V_{DC} Q_f]$ $[\% \text{ of } [\% \text{ of } [A] per [V] [1]]$					Run on Time [ms]	Remarks 5)		
1	100	100	0	0	0,18	8	6,003	427	1,0	00	225	BL
2	100	100	-5	-5	1,45	9	6,003	427	1,0	26	208	IB
3	100	100	-5	0	1,49	3	6,003	427	1,0	53	216	IB
4	100	100	-5	+5	1,45	8	6,003	427	1,0	79	206	IB
5	100	100	0	-5	0,22	0	6,003	427	0,9	75	207	IB
6	100	100	0	+5	0,22	1	6,003	427	1,0	25	210	IB
7	100	100	+5	-5	1,52	4	6,003	427	0,9	28	148	IB
8	100	100	+5	0	1,49	3	6,003	427	0,9	53	207	IB
9	100	100	+5	+5 +5 1,524 6,003 427 0,976				200	IB			
Para	Parameter at 0% per phase L= 28,05 mH R= 8,81 Ω C= 361,21 μ F					21 μF						

Note:

RLC is adjusted to min. +/-1% of the inverter rated output power

Condition A:

EUT output power PEUT = Maximum 6)

EUT input voltage $^{6)}$ = >75% of rated input voltage range

The tests had been performed on the HYD 6000-EP and is valid for the HYD 3000-EP, HYD 3680-EP, HYD 4000-EP, HYD 5000-EP and HYD 5500-EP, since it is identical in hardware and software construction except output power derated by software.

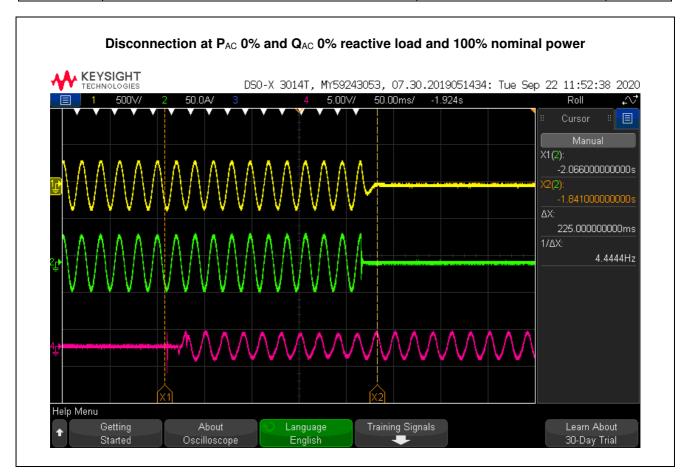
TRF No. IEC/EN 62116 VER.2

¹⁾ PEUT: EUT output power

²⁾ P_{AC}: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

³⁾ Q_{AC}: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

⁴⁾ Fundamental of IAC when RLC is adjusted


⁵⁾ BL: Balance condition, IB: Imbalance condition.

⁶⁾ Maximum EUT output power condition should be achieved using the maximum allowable input power. Actual output power may exceed nominal rated output.

 $^{^{7)}}$ Based on EUT rated input operating range. For example, If range is between X volts and Y volts, 90 % of range =X + 0,75 × (Y – X). Y shall not exceed 0,8 × EUT maximum system voltage (i.e., maximum allowable array open circuit voltage). In any case, the EUT should not be operated outside of its allowable input voltage range.

IEC 62116					
Clause	Requirement + Test	Result - Remark	Verdict		

	IEC 62116		
Clause	Requirement + Test	Result - Remark	Verdict

	slanding pro lition B (EU				d imba	alan	nce (reac	tive load	d) for	test	t	Р
HYD	6000-EP at	230Va.c. / 5	0Hz									
	Test condit	tions					equency: 5 U _N =230+ on factor of Quality	/-3Vac of choke		%		
[Disconnectio	n limit					2s					
No	P _{EUT} 1) [% of EUT rating]	Reactive load [% of Q _L in 6.1.d) 1]	P _{AC} ²⁾ [% of nominal]	Q _{AC} ³⁾ [% of nominal]	I _{AC} '		P _{EUT} [kW per phase]	V _{DC} [V]	C [1		Run on Time [ms]	Remarks 5)
12	66	66	0	-5	0,22	28	4,000	277	0,9	75	149	IB
13	66	66	0	-4	0,22	20	4,000	277	0,9	80	222	IB
14	66	66	0	-3	0,21	4	4,000	277	0,9	85	200	IB
15	66	66	0	-2	0,20	9	4,000	277	0,9	90	199	IB
16	66	66	0	-1	0,20)7	4,000	277	0,9	95	201	IB
2	66	66	0	0	0,20)6	4,000	277	1,0	00	232	BL
17	66	66	0	1	0,20)7	4,000	277	1,0	05	217	IB
18	66	66	0	2	0,20	9	4,000	277	1,0	10	203	IB
19	66	66	0	3	0,21	4	4,000	277	1,0	15	213	IB
20	66	66	0	4	0,22	20	4,000	277	1,0	20	215	IB
21	66	66	0	5	0,22	28	4,000	277	1,0	25	154	IB
					Ī							
Para	ameter at 0%	6 per phase	L=	42,10 mH			R= 13	,23 Ω			C = 240	69 μF

Note:

RLC is adjusted to min. +/-1% of the inverter rated output power

Condition B:

EUT output power $P_{EUT} = 50 \% - 66 \%$ of maximum

EUT input voltage $^{6)}$ = 50 % of rated input voltage range, ± 10 %

The tests had been performed on the HYD 6000-EP and is valid for the HYD 3000-EP, HYD 3680-EP, HYD 4000-EP, HYD 4600-EP, HYD 5000-EP and HYD 5500-EP, since it is identical in hardware and software construction except output power derated by software.

Page 18 of 38

¹⁾ PEUT: EUT output power

²⁾ P_{AC}: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

³⁾ Q_{AC}: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

⁴⁾ Fundamental of IAC when RLC is adjusted

⁵⁾ BL: Balance condition, IB: Imbalance condition.

 $^{^{6)}}$ Based on EUT rated input operating range. For example, If range is between X volts and Y volts, 50 % of range =X + 0,5 × (Y - X). Y shall not exceed 0,8 × EUT maximum system voltage (i.e., maximum allowable array open circuit voltage). In any case, the EUT should not be operated outside of its allowable input voltage range.

Tel: +86 769 8998 2098

Fax: +86 769 8599 1080

TRF No. IEC/EN 62116 VER.2

Email: customerservice.dg@bureauveritas.com

	IEC 62116		
Clause	Requirement + Test	Result - Remark	Verdict

		IEC 62116		
Clause	Requirement + Test		Result - Remark	Verdict

		otection acc T output = 2			imba	aland	ce (reactiv	/e load)	for	test		Р	
HYD	6000-EP at	230Va.c. / 5	0Hz										
	Test condit					Į	quency: 50 J _N =230+/- n factor of Quality	3Vac chokes		%			
[Disconnection			2s						1			
No	P _{EUT} 1) [% of EUT rating]	Reactive load [% of Q _L in 6.1.d) 1]	P _{AC} ²⁾ [% of nominal]	Q _{AC} ³⁾ [% of nominal]	I _{AC}		P _{EUT} [kW per phase]	V _{DC} [V]		Q _f [1]	Run on Time [ms]	Remark s ⁵⁾	
22	33	33	0	-5	0,1	82	1,993	127	0,	973	114	IB	
23	33	33	0	-4	0,1	78	1,993	127	0,	978	195	IB	
24	33	33	0	-3	0,1	75	1,993	127	0,	983	130	IB	
25	33	33	0	-2	0,1	73	1,993	127	0,	988	216	IB	
26	33	33	0	-1	0,1	71	1,993	127	0,	993	209	IB	
3	33	33	0	0	0,1	71	1,993	127	0,	998	221	BL	
27	33	33	0	1	0,1	71	1,993	127	1,	,003	214	IB	
28	33	33	0	2	0,1	73	1,993	127	1,	,008	211	IB	
29	33	33	0	3	0,1	75	1,993	127	1,	,013	138	IB	
30	33	33	0	4	0,1	78	1,993	127	1,	,018	208	IB	
31	33	33	0	5	5 0,182 1,993 127 1,023		023	129	IB				
Para	ameter at 0%	% per phase	L=	84,66 mH			R= 26,5	54 Ω			C= 119,6	8 μF	

Note:

RLC is adjusted to min. +/-1% of the inverter rated output power

Condition B:

EUT output power PEUT = 25 % - 33 % $^{6)}$ of maximum

EUT input voltage 7) = <20 % of rated input voltage range

The tests had been performed on the HYD 6000-EP and is valid for the HYD 3000-EP, HYD 3680-EP, HYD 4000-EP, HYD 5000-EP and HYD 5500-EP, since it is identical in hardware and software construction except output power derated by software.

¹⁾ PEUT: EUT output power

²⁾ P_{AC}: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

³⁾ Q_{AC}: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

⁴⁾ Fundamental of I_{AC} when RLC is adjusted

⁵⁾ BL: Balance condition, IB: Imbalance condition.

⁶⁾ Or minimum allowable EUT output level if greater than 33 %.

 $^{^{7)}}$ Based on EUT rated input operating range. For example, If range is between X volts and Y volts, 10 % of range =X + 0,2 × (Y - X). Y shall not exceed 0,8 × EUT maximum system voltage (i.e., maximum allowable array open circuit voltage). In any case, the EUT should not be operated outside of its allowable input voltage range.

	IEC 62116		
Clause	Requirement + Test	Result - Remark	Verdict

		IEC 62116		
Clause	Requirement + Test		Result - Remark	Verdict

	slanding pro			le 6 - Load	imbal	anc	e (real, r	eactive	load) for		Р	
HYD	6000-EP at	230Va.c. / 6	0Hz										
	Test condit	ions					quency: 5 U _N =230+ on factor c Quality	/-3Vac of choke		%			
[Disconnectio	n limit					2s						
No	P _{EUT} 1) [% of EUT rating]	Reactive load [% of Q _L in 6.1.d) 1]	P _{AC} ²⁾ [% of nominal]	Q _{AC} ³⁾ [% of nominal]	I _{AC} ⁴ [A]		P _{EUT} [kW per phase]	V _{DC} [V]	C [1		Run on Time [ms]	Remarks 5)	
1	100	100	0	0	0,02	5	6,000	427	1,0	00	459	BL	
2	100	100	-5	-5	1,29	2	6,000	427	1,0	26	343	IB	
3	100	100	-5	0	1,32	5	6,000	427	1,0	53	395	IB	
4	100	100	-5	+5	1,29	0	6,000	427	1,0	79	345	IB	
5	100	100	0	-5	0,06	1	6,000	427	0,9	75	393	IB	
6	100	100	0	+5	0,06	3	6,000	427	1,0	25	409	IB	
7	100	100	+5	-5	1,36	4	6,000	427	0,9	28	361	IB	
8	100	100	+5	0	1,33	4	6,000	427	0,9	53	387	IB	
9	100	100	+5	+5	+5 1,366		6,000	427	0,9	76	399	IB	
	_	_	1		- -							_	
Parameter at 0% per phase L= 28,06 mH R= 8,82 Ω C= 361,09 μ F						09 μF							

Note:

RLC is adjusted to min. +/-1% of the inverter rated output power

Condition A:

EUT output power PEUT = Maximum 6)

EUT input voltage $^{6)}$ = >75% of rated input voltage range

The tests had been performed on the HYD 6000-EP and is valid for the HYD 3000-EP, HYD 3680-EP, HYD 4000-EP, HYD 5000-EP and HYD 5500-EP, since it is identical in hardware and software construction except output power derated by software.

Tel: +86 769 8998 2098 Fax: +86 769 8599 1080 Email: <u>customerservice.dg@bureauveritas.com</u> TRF No. IEC/EN 62116 VER.2

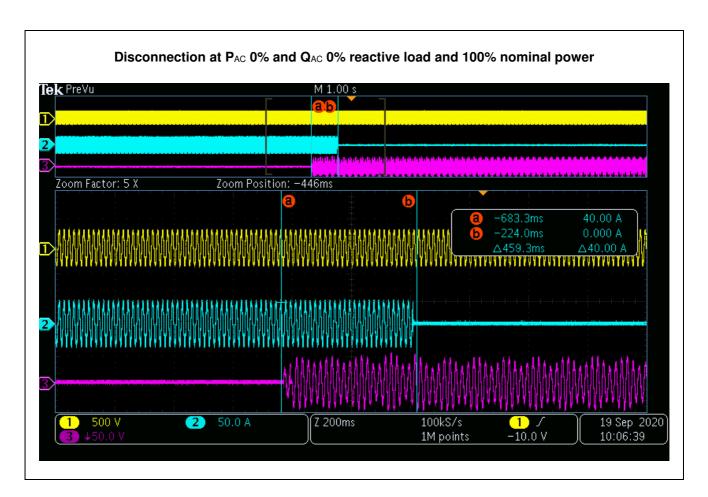
Page 22 of 38

¹⁾ PEUT: EUT output power

²⁾ P_{AC}: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

³⁾ Q_{AC}: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

⁴⁾ Fundamental of IAC when RLC is adjusted


⁵⁾ BL: Balance condition, IB: Imbalance condition.

⁶⁾ Maximum EUT output power condition should be achieved using the maximum allowable input power. Actual output power may exceed nominal rated output.

 $^{^{7)}}$ Based on EUT rated input operating range. For example, If range is between X volts and Y volts, 90 % of range =X + 0,75 × (Y – X). Y shall not exceed 0,8 × EUT maximum system voltage (i.e., maximum allowable array open circuit voltage). In any case, the EUT should not be operated outside of its allowable input voltage range.

	IEC 62116		
Clause	Requirement + Test	Result - Remark	Verdict

	IEC 62116		
Clause	Requirement + Test	Result - Remark	Verdict

	slanding prolition B (EU				d imba	lance (rea	active loa	d) for	test		Р
HYD	6000-EP at	230Va.c. / 6	0Hz								
	Test condit	ions				rtion facto	0+/-3Vac		%		
I	Disconnectio	n limit					2s				
No	P _{EUT} 1) [% of EUT rating]	Reactive load [% of Q _L in 6.1.d) 1]	P _{AC} ²⁾ [% of nominal]	Q _{AC} ³⁾ [% of nominal]	I _{AC} ⁴ [A]	P _{EUT} [kW per phase	V _{DC} [V]	C [1		Run on Time [ms]	Remarks 5)
12	66	66	0	-5	0,08	7 3,961	277	0,9	74	358	IB
13	66	66	0	-4	0,07	3,961	277	0,9	79	378	IB
14	66	66	0	-3	0,07	3 3,961	277	0,9	84	372	IB
15	66	66	0	-2	0,06	9 3,961	277	0,9	89	382	IB
16	66	66	0	-1	0,06	7 3,961	277	0,9	94	340	IB
2	66	66	0	0	0,06	3,961	277	0,9	99	444	BL
17	66	66	0	1	0,06	7 3,961	277	1,0	04	344	IB
18	66	66	0	2	0,07	3,961	277	1,0	09	376	IB
19	66	66	0	3	0,07	3,961	277	1,0	14	364	IB
20	66	66	0	4	0,08	3,961	277	1,0	19	376	IB
21	66	66	0	5 0,088 3,961 277 1,024 312		312	IB				
_	_				1				<u>-</u>	-	
Parameter at 0% per phase			L=	42,55 mH		R=	13,35 Ω			C= 238,	10 μF

Note:

RLC is adjusted to min. +/-1% of the inverter rated output power

Condition B:

EUT output power $P_{EUT} = 50 \% - 66 \%$ of maximum

EUT input voltage $^{6)}$ = 50 % of rated input voltage range, ± 10 %

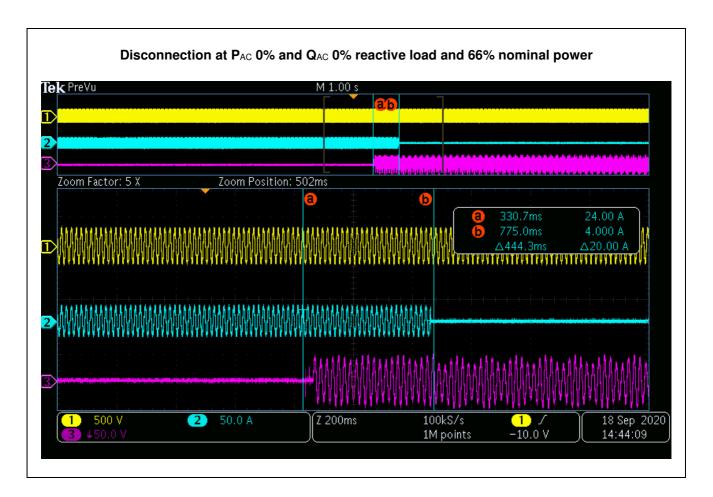
The tests had been performed on the HYD 6000-EP and is valid for the HYD 3000-EP, HYD 3680-EP, HYD 4000-EP, HYD 5000-EP and HYD 5500-EP, since it is identical in hardware and software construction except output power derated by software.

Page 24 of 38

¹⁾ PEUT: EUT output power

²⁾ P_{AC}: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

³⁾ Q_{AC}: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.


⁴⁾ Fundamental of IAC when RLC is adjusted

⁵⁾ BL: Balance condition, IB: Imbalance condition.

⁶⁾ Based on EUT rated input operating range. For example, If range is between X volts and Y volts, 50 % of range = $X + 0.5 \times (Y - X)$. Y shall not exceed 0.8 × EUT maximum system voltage (i.e., maximum allowable array open circuit voltage). In any case, the EUT should not be operated outside of its allowable input voltage range.

	IEC 62116		
Clause	Requirement + Test	Result - Remark	Verdict

IEC 62116						
Clause	Requirement + Test	Result - Remark	Verdict			

6.1 Islanding protection according Table 7 – Load imbalance (reactive load) for test condition C (EUT output = 25 % – 33 %)							Р				
HYD 6000-EP at 230Va.c. / 60Hz											
Test conditions			Frequency: $50+/-0,1Hz$ $U_N=230+/-3Vac$ Distortion factor of chokes < 2% $Quality = 1$								
	Disconnectio		2s								
No	P _{EUT} 1) [% of EUT rating]	Reactive load [% of Q _L in 6.1.d) 1]	P _{AC} ²⁾ [% of nominal]	Q _{AC} ³⁾ [% of nominal]	I _{AC} ⁴ [A]		P _{EUT} [kW per phase]	V _{DC} [V]	Q _f [1]	Run on Time [ms]	Remark s ⁵⁾
22	33	33	0	-5	0,08	2	1,979	127	0,975	374	IB
23	33	33	0	-4	0,07	8	1,979	127	0,980	382	IB
24	33	33	0	-3	0,07	5	1,979	127	0,985	356	IB
25	33	33	0	-2	0,07	3	1,979	127	0,990	368	IB
26	33	33	0	-1	0,07	1	1,979	127	0,995	398	IB
3	33	33	0	0	0,07	1	1,979	127	1,001	440	BL
27	33	33	0	1	0,07	1	1,979	127	1,005	390	IB
28	33	33	0	2	0,07	3	1,979	127	1,010	382	IB
29	33	33	0	3	0,07	5	1,979	127	1,015	332	IB
30	33	33	0	4	0,07	8	1,979	127	1,020	398	IB
31	33	33	0	5	0,08	2	1,979	127	1,025	366	IB
						•					
Para	ameter at 0%	% per phase	L= 85,00 mH			R= 26,73 Ω			C= 119,20 μF		

Note:

RLC is adjusted to min. +/-1% of the inverter rated output power

Condition B:

EUT output power PEUT = 25 % - 33 % $^{6)}$ of maximum

EUT input voltage 7) = <20 % of rated input voltage range

The tests had been performed on the HYD 6000-EP and is valid for the HYD 3000-EP, HYD 3680-EP, HYD 4000-EP, HYD 5000-EP and HYD 5500-EP, since it is identical in hardware and software construction except output power derated by software.

Tel: +86 769 8998 2098 Fax: +86 769 8599 1080 Email: <u>customerservice.dg@bureauveritas.com</u> TRF No. IEC/EN 62116 VER.2

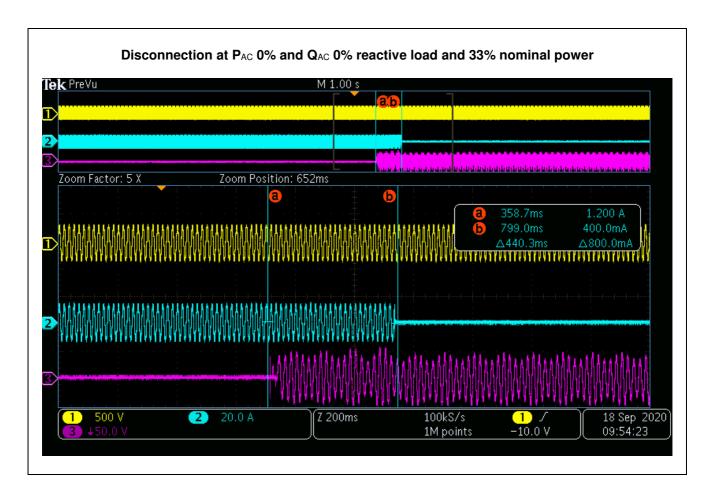
Page 26 of 38

¹⁾ PEUT: EUT output power

²⁾ P_{AC}: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

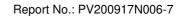
³⁾ Q_{AC}: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

⁴⁾ Fundamental of I_{AC} when RLC is adjusted

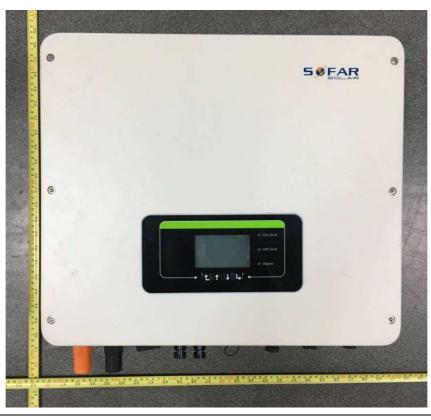

⁵⁾ BL: Balance condition, IB: Imbalance condition.

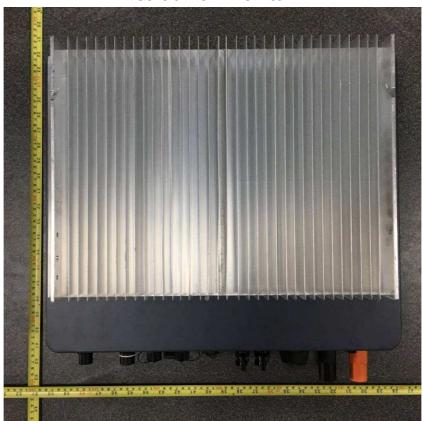
⁶⁾ Or minimum allowable EUT output level if greater than 33 %.

 $^{^{7)}}$ Based on EUT rated input operating range. For example, If range is between X volts and Y volts, 10 % of range =X + 0,2 × (Y - X). Y shall not exceed 0,8 × EUT maximum system voltage (i.e., maximum allowable array open circuit voltage). In any case, the EUT should not be operated outside of its allowable input voltage range.



IEC 62116					
Clause	Requirement + Test	Result - Remark	Verdict		


Annex 1 Pictures of the unit



EUT Photo

General view - 1 of Front

General view - 1 of Rear

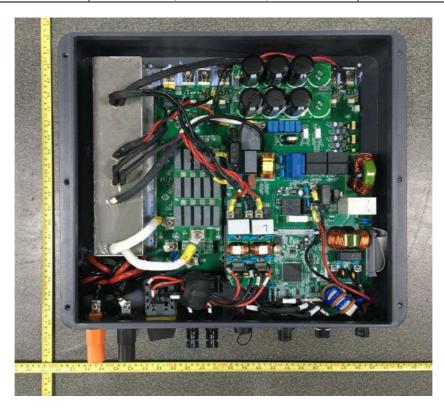
Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 29 of 38

EUT Photo

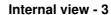
General view - 1 of Bottom

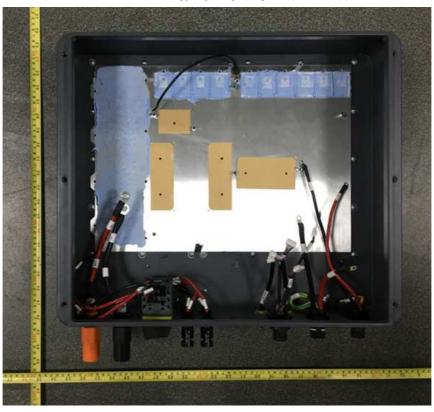

General view - 1 of Side



EUT Photo

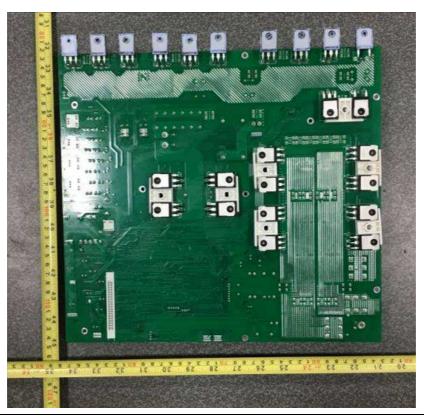
Internal view – 1 (HYD 4600-EP, HYD 5000-EP, HYD 5500-EP,HYD 6000-EP)

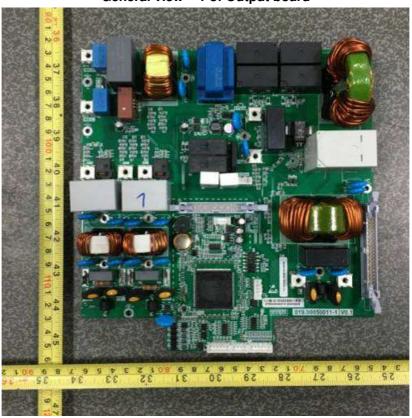



Internal view – 2 (HYD 3000-EP, HYD 3680-EP, HYD 4000-EP)



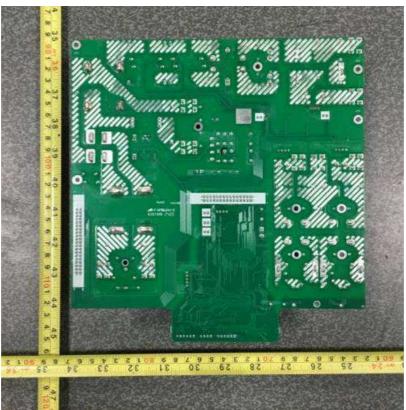
General view - 1 of Power board

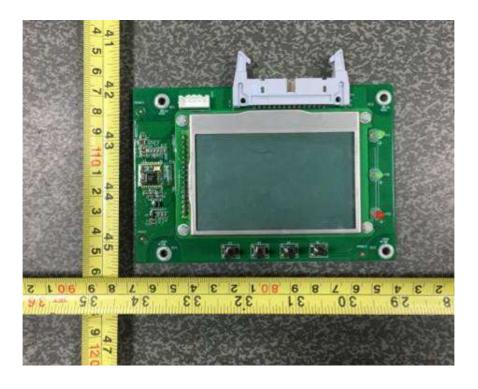


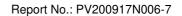


EUT Photo

General view - 2 of Power board

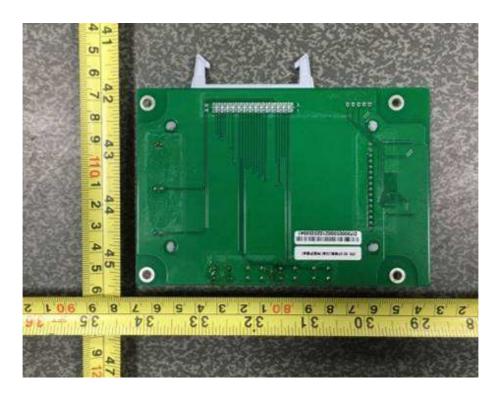

General view - 1 of Output board

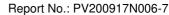




General view - 2 of Output board

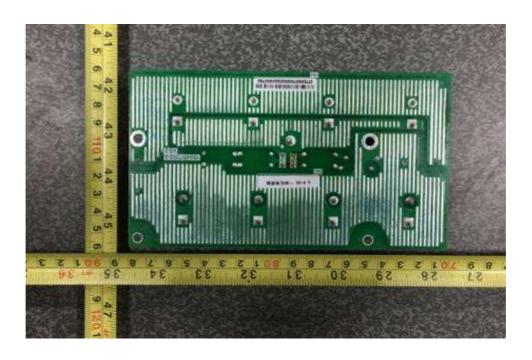
General view - 1 of LCD panel




EUT Photo

General view - 2 of LCD panel

General view - 1 of BUS board



EUT Photo

General view - 2 of BUS board

General view of Grouding point

Annex 2 Test equipment list

Testing Location: Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City,

Guangdong Province, 523942, People's Republic of China

Date(s) of performance test: 2020-09-17 to 2020-12-28

Equipment Internal No.		Manufacturer	Туре	Serial No.	Next Calibration date	
Power Analyser	A4080002DG	YOKOGAWA	WT3000	91M210852	Jun. 16, 2021	
AC Source	A7040019DG	Chroma	61512	61512000439	Monitored by Power Analyser	
	A7040020DG	Chroma	61512	61512000438		
DC Simulation	A7040015DG	Chroma	62150H-1000S	62150EF00488		
Power Supply	A7040016DG	Chroma	62150H-1000S	62150EF00490		
	A7040017DG	Chroma	620028	620028EF00120		
RLC Load	A7150027DG	Qunling	ACLT-3803H	93VOO2869		
Eight Channel Digital Phosphor Oscilloscope	A4089017DG	YOKOGAWA	DL850	91N726247	Sep. 23, 2021	
Oscilloscope	A4089008DG	Tektronix	TPP1000	C008230	Aug. 10, 2021	
probe	A4089010DG	Tektronix	TPP1000	C008228	Aug. 10, 2021	
	A4089011DG	Tektronix	TPP1000	C008229	Aug. 10, 2021	
Current	A1060007DG	YOKOGAWA	CT200	1130700012	Sep. 02, 2021	
transducer	A1060008DG	YOKOGAWA	CT200	1130700017	Sep. 02, 2021	
	A1060012DG	YOKOGAWA	CT200	1130700018	Sep. 02, 2021	
Power Analyser	//	ZLG	PA5000H	C820290908200 2110001	Mar. 02, 2021	
Oscilloscope	//	Agilent	DS05014A	MY50070288	Jan. 13, 2021	
Oscilloscope	//	CYBERTEK	CP1000A	C181000922	Jan. 13, 2021	
current probe	//	CYBERTEK	CP1000A	C181000925	Jan. 13, 2021	
	//	CYBERTEK	CP1000A	C181000929	Jan. 13, 2021	
	//	CYBERTEK	CP1000A	C181000931	Jan. 13, 2021	
Oscilloscope	//	SANHUA	SI-9110	152627	Jan. 13, 2021	
probe	//	SIALENT	DS5034X	SDS5XEAC3R0 011	Jan. 13, 2021	
	//	AGILENT	N2863B	YF0139	Jan. 13, 2021	